Step | Hyp | Ref
| Expression |
1 | | rpnnen1lem.1 |
. . 3
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
2 | | ssrab2 3650 |
. . 3
⊢ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ |
3 | 1, 2 | eqsstri 3598 |
. 2
⊢ 𝑇 ⊆
ℤ |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆
ℤ) |
5 | | nnre 10904 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
6 | | remulcl 9900 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
7 | 6 | ancoms 468 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
8 | 5, 7 | sylan2 490 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) |
9 | | btwnz 11355 |
. . . . . . . 8
⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) |
10 | 9 | simpld 474 |
. . . . . . 7
⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
11 | 8, 10 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
𝑛 < (𝑘 · 𝑥)) |
12 | | zre 11258 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
13 | 12 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈
ℝ) |
14 | | simpll 786 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈
ℝ) |
15 | | nngt0 10926 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
16 | 5, 15 | jca 553 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
17 | 16 | ad2antlr 759 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
18 | | ltdivmul 10777 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
19 | 13, 14, 17, 18 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
20 | 19 | rexbidva 3031 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) |
21 | 11, 20 | mpbird 246 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥) |
22 | | rabn0 3912 |
. . . . 5
⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) |
23 | 21, 22 | sylibr 223 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
24 | 1 | neeq1i 2846 |
. . . 4
⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
25 | 23, 24 | sylibr 223 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) |
26 | 1 | rabeq2i 3170 |
. . . . . 6
⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) |
27 | 5 | ad2antlr 759 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈
ℝ) |
28 | 27, 14, 6 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) |
29 | | ltle 10005 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
30 | 13, 28, 29 | syl2anc 691 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
31 | 19, 30 | sylbid 229 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) |
32 | 31 | impr 647 |
. . . . . 6
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) |
33 | 26, 32 | sylan2b 491 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) |
34 | 33 | ralrimiva 2949 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) |
35 | | breq2 4587 |
. . . . . 6
⊢ (𝑦 = (𝑘 · 𝑥) → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ (𝑘 · 𝑥))) |
36 | 35 | ralbidv 2969 |
. . . . 5
⊢ (𝑦 = (𝑘 · 𝑥) → (∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥))) |
37 | 36 | rspcev 3282 |
. . . 4
⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
38 | 8, 34, 37 | syl2anc 691 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑦 ∈ ℝ
∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
39 | | suprzcl 11333 |
. . 3
⊢ ((𝑇 ⊆ ℤ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) → sup(𝑇, ℝ, < ) ∈ 𝑇) |
40 | 4, 25, 38, 39 | syl3anc 1318 |
. 2
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ 𝑇) |
41 | 3, 40 | sseldi 3566 |
1
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℤ) |