MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Visualization version   GIF version

Theorem rplogsumlem2 24974
Description: Lemma for rplogsum 25016. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem2
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 12471 . . . . 5 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
21oveq2d 6565 . . . 4 (𝐴 ∈ ℤ → (1...(⌊‘𝐴)) = (1...𝐴))
32sumeq1d 14279 . . 3 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛))
4 fveq2 6103 . . . . . 6 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
5 eleq1 2676 . . . . . . 7 (𝑛 = (𝑝𝑘) → (𝑛 ∈ ℙ ↔ (𝑝𝑘) ∈ ℙ))
6 fveq2 6103 . . . . . . 7 (𝑛 = (𝑝𝑘) → (log‘𝑛) = (log‘(𝑝𝑘)))
75, 6ifbieq1d 4059 . . . . . 6 (𝑛 = (𝑝𝑘) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0))
84, 7oveq12d 6567 . . . . 5 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)))
9 id 22 . . . . 5 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
108, 9oveq12d 6567 . . . 4 (𝑛 = (𝑝𝑘) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
11 zre 11258 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
12 elfznn 12241 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1312adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
14 vmacl 24644 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
1613nnrpd 11746 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
1716relogcld 24173 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
18 0re 9919 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4080 . . . . . . . 8 (((log‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) ∈ ℝ)
2017, 18, 19sylancl 693 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) ∈ ℝ)
2115, 20resubcld 10337 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) ∈ ℝ)
2221, 13nndivred 10946 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ∈ ℝ)
2322recnd 9947 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ∈ ℂ)
24 simprr 792 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
25 vmaprm 24643 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → (Λ‘𝑛) = (log‘𝑛))
26 prmnn 15226 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
2726nnred 10912 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
28 prmgt1 15247 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 1 < 𝑛)
2927, 28rplogcld 24179 . . . . . . . . . . . . 13 (𝑛 ∈ ℙ → (log‘𝑛) ∈ ℝ+)
3025, 29eqeltrd 2688 . . . . . . . . . . . 12 (𝑛 ∈ ℙ → (Λ‘𝑛) ∈ ℝ+)
3130rpne0d 11753 . . . . . . . . . . 11 (𝑛 ∈ ℙ → (Λ‘𝑛) ≠ 0)
3231necon2bi 2812 . . . . . . . . . 10 ((Λ‘𝑛) = 0 → ¬ 𝑛 ∈ ℙ)
3332ad2antll 761 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ¬ 𝑛 ∈ ℙ)
3433iffalsed 4047 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = 0)
3524, 34oveq12d 6567 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (0 − 0))
36 0m0e0 11007 . . . . . . 7 (0 − 0) = 0
3735, 36syl6eq 2660 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = 0)
3837oveq1d 6564 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = (0 / 𝑛))
3912ad2antrl 760 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
4039nnrpd 11746 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℝ+)
4140rpcnne0d 11757 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
42 div0 10594 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (0 / 𝑛) = 0)
4341, 42syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
4438, 43eqtrd 2644 . . . 4 ((𝐴 ∈ ℤ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = 0)
4510, 11, 23, 44fsumvma2 24739 . . 3 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
463, 45eqtr3d 2646 . 2 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)))
47 fzfid 12634 . . . . 5 (𝐴 ∈ ℤ → (2...((abs‘𝐴) + 1)) ∈ Fin)
48 inss2 3796 . . . . . . . . . . . 12 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
49 simpr 476 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
5048, 49sseldi 3566 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
51 prmnn 15226 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
5352nnred 10912 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
5411adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
55 zcn 11259 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
5655abscld 14023 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℝ)
57 peano2re 10088 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℝ)
5958adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈ ℝ)
60 inss1 3795 . . . . . . . . . . . . 13 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
6160sseli 3564 . . . . . . . . . . . 12 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (0[,]𝐴))
62 elicc2 12109 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6318, 11, 62sylancr 694 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6461, 63syl5ib 233 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
6564imp 444 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
6665simp3d 1068 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
6755adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℂ)
6867abscld 14023 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ∈ ℝ)
6954leabsd 14001 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ (abs‘𝐴))
7068lep1d 10834 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
7154, 68, 59, 69, 70letrd 10073 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ≤ ((abs‘𝐴) + 1))
7253, 54, 59, 66, 71letrd 10073 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ ((abs‘𝐴) + 1))
73 prmuz2 15246 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7450, 73syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
75 nn0abscl 13900 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
76 nn0p1nn 11209 . . . . . . . . . . . 12 ((abs‘𝐴) ∈ ℕ0 → ((abs‘𝐴) + 1) ∈ ℕ)
7775, 76syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℕ)
7877nnzd 11357 . . . . . . . . . 10 (𝐴 ∈ ℤ → ((abs‘𝐴) + 1) ∈ ℤ)
7978adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((abs‘𝐴) + 1) ∈ ℤ)
80 elfz5 12205 . . . . . . . . 9 ((𝑝 ∈ (ℤ‘2) ∧ ((abs‘𝐴) + 1) ∈ ℤ) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1)))
8174, 79, 80syl2anc 691 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (2...((abs‘𝐴) + 1)) ↔ 𝑝 ≤ ((abs‘𝐴) + 1)))
8272, 81mpbird 246 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...((abs‘𝐴) + 1)))
8382ex 449 . . . . . 6 (𝐴 ∈ ℤ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ (2...((abs‘𝐴) + 1))))
8483ssrdv 3574 . . . . 5 (𝐴 ∈ ℤ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...((abs‘𝐴) + 1)))
85 ssfi 8065 . . . . 5 (((2...((abs‘𝐴) + 1)) ∈ Fin ∧ ((0[,]𝐴) ∩ ℙ) ⊆ (2...((abs‘𝐴) + 1))) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
8647, 84, 85syl2anc 691 . . . 4 (𝐴 ∈ ℤ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
87 fzfid 12634 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
88 simprl 790 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
8948, 88sseldi 3566 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
90 elfznn 12241 . . . . . . . . . . 11 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
9190ad2antll 761 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
92 vmappw 24642 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
9389, 91, 92syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
9452adantrr 749 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
9594nnrpd 11746 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑝 ∈ ℝ+)
9695relogcld 24173 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘𝑝) ∈ ℝ)
9793, 96eqeltrd 2688 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
9891nnnn0d 11228 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
99 nnexpcl 12735 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
10094, 98, 99syl2anc 691 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
101100nnrpd 11746 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ+)
102101relogcld 24173 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (log‘(𝑝𝑘)) ∈ ℝ)
103 ifcl 4080 . . . . . . . . 9 (((log‘(𝑝𝑘)) ∈ ℝ ∧ 0 ∈ ℝ) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) ∈ ℝ)
104102, 18, 103sylancl 693 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) ∈ ℝ)
10597, 104resubcld 10337 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) ∈ ℝ)
106105, 100nndivred 10946 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
107106anassrs 678 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
10887, 107fsumrecl 14312 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
10986, 108fsumrecl 14312 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℝ)
11052nnrpd 11746 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
111110relogcld 24173 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
112 uz2m1nn 11639 . . . . . . 7 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
11374, 112syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈ ℕ)
11452, 113nnmulcld 10945 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℕ)
115111, 114nndivred 10946 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
11686, 115fsumrecl 14312 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
117 2re 10967 . . . 4 2 ∈ ℝ
118117a1i 11 . . 3 (𝐴 ∈ ℤ → 2 ∈ ℝ)
11918a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ∈ ℝ)
12052nngt0d 10941 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝑝)
121119, 53, 54, 120, 66ltletrd 10076 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < 𝐴)
12254, 121elrpd 11745 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
123122relogcld 24173 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
124 prmgt1 15247 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 1 < 𝑝)
12550, 124syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
12653, 125rplogcld 24179 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
127123, 126rerpdivcld 11779 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
128126rpcnd 11750 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
129128mulid2d 9937 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 · (log‘𝑝)) = (log‘𝑝))
130110, 122logled 24177 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
13166, 130mpbid 221 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ≤ (log‘𝐴))
132129, 131eqbrtrd 4605 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
133 1re 9918 . . . . . . . . . . . 12 1 ∈ ℝ
134133a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℝ)
135134, 123, 126lemuldivd 11797 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
136132, 135mpbid 221 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
137 flge1nn 12484 . . . . . . . . 9 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ)
138127, 136, 137syl2anc 691 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ)
139 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
140138, 139syl6eleq 2698 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ (ℤ‘1))
141106recnd 9947 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℂ)
142141anassrs 678 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ∈ ℂ)
143 oveq2 6557 . . . . . . . . . 10 (𝑘 = 1 → (𝑝𝑘) = (𝑝↑1))
144143fveq2d 6107 . . . . . . . . 9 (𝑘 = 1 → (Λ‘(𝑝𝑘)) = (Λ‘(𝑝↑1)))
145143eleq1d 2672 . . . . . . . . . 10 (𝑘 = 1 → ((𝑝𝑘) ∈ ℙ ↔ (𝑝↑1) ∈ ℙ))
146143fveq2d 6107 . . . . . . . . . 10 (𝑘 = 1 → (log‘(𝑝𝑘)) = (log‘(𝑝↑1)))
147145, 146ifbieq1d 4059 . . . . . . . . 9 (𝑘 = 1 → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) = if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0))
148144, 147oveq12d 6567 . . . . . . . 8 (𝑘 = 1 → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)))
149148, 143oveq12d 6567 . . . . . . 7 (𝑘 = 1 → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)))
150140, 142, 149fsum1p 14326 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = ((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘))))
15152nncnd 10913 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℂ)
152151exp1d 12865 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) = 𝑝)
153152fveq2d 6107 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘(𝑝↑1)) = (Λ‘𝑝))
154 vmaprm 24643 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
15550, 154syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘𝑝) = (log‘𝑝))
156153, 155eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (Λ‘(𝑝↑1)) = (log‘𝑝))
157152, 50eqeltrd 2688 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝↑1) ∈ ℙ)
158157iftrued 4044 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0) = (log‘(𝑝↑1)))
159152fveq2d 6107 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘(𝑝↑1)) = (log‘𝑝))
160158, 159eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0) = (log‘𝑝))
161156, 160oveq12d 6567 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) = ((log‘𝑝) − (log‘𝑝)))
162128subidd 10259 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − (log‘𝑝)) = 0)
163161, 162eqtrd 2644 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) = 0)
164163, 152oveq12d 6567 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = (0 / 𝑝))
165110rpcnne0d 11757 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
166 div0 10594 . . . . . . . . 9 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
167165, 166syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 / 𝑝) = 0)
168164, 167eqtrd 2644 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) = 0)
169 1p1e2 11011 . . . . . . . . . 10 (1 + 1) = 2
170169oveq1i 6559 . . . . . . . . 9 ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝))))
171170a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2...(⌊‘((log‘𝐴) / (log‘𝑝)))))
172 elfzuz 12209 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ (ℤ‘2))
173 eluz2nn 11602 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
174172, 173syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
175174, 170eleq2s 2706 . . . . . . . . . . . 12 (𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
17650, 175, 92syl2an 493 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
17752adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℕ)
178 nnq 11677 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
179177, 178syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑝 ∈ ℚ)
180172, 170eleq2s 2706 . . . . . . . . . . . . . 14 (𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ (ℤ‘2))
181180adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → 𝑘 ∈ (ℤ‘2))
182 expnprm 15444 . . . . . . . . . . . . 13 ((𝑝 ∈ ℚ ∧ 𝑘 ∈ (ℤ‘2)) → ¬ (𝑝𝑘) ∈ ℙ)
183179, 181, 182syl2anc 691 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ¬ (𝑝𝑘) ∈ ℙ)
184183iffalsed 4047 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0) = 0)
185176, 184oveq12d 6567 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = ((log‘𝑝) − 0))
186128subid1d 10260 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) − 0) = (log‘𝑝))
187186adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) − 0) = (log‘𝑝))
188185, 187eqtrd 2644 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) = (log‘𝑝))
189188oveq1d 6564 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = ((log‘𝑝) / (𝑝𝑘)))
190171, 189sumeq12dv 14284 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
191168, 190oveq12d 6567 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((Λ‘(𝑝↑1)) − if((𝑝↑1) ∈ ℙ, (log‘(𝑝↑1)), 0)) / (𝑝↑1)) + Σ𝑘 ∈ ((1 + 1)...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘))) = (0 + Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘))))
192 fzfid 12634 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
193111adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℝ)
194 nnnn0 11176 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
19552, 194, 99syl2an 493 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
196193, 195nndivred 10946 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
197174, 196sylan2 490 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
198192, 197fsumrecl 14312 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ∈ ℝ)
199198recnd 9947 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ∈ ℂ)
200199addid2d 10116 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 + Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘))) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
201150, 191, 2003eqtrd 2648 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)))
202110rpreccld 11758 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℝ+)
203127flcld 12461 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
204203peano2zd 11361 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℤ)
205202, 204rpexpcld 12894 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈ ℝ+)
206205rpge0d 11752 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
20752nnrecred 10943 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℝ)
208207resqcld 12897 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) ∈ ℝ)
209138peano2nnd 10914 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℕ)
210209nnnn0d 11228 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ ℕ0)
211207, 210reexpcld 12887 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ∈ ℝ)
212208, 211subge02d 10498 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2)))
213206, 212mpbid 221 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 / 𝑝)↑2))
214113nnrpd 11746 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 − 1) ∈ ℝ+)
215214rpcnne0d 11757 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
216202rpcnd 11750 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ∈ ℂ)
217 dmdcan 10614 . . . . . . . . . . 11 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ (1 / 𝑝) ∈ ℂ) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝))
218215, 165, 216, 217syl3anc 1318 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 / 𝑝) / 𝑝))
219134recnd 9947 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 ∈ ℂ)
220 divsubdir 10600 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
221151, 219, 165, 220syl3anc 1318 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
222 divid 10593 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
223165, 222syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 / 𝑝) = 1)
224223oveq1d 6564 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
225221, 224eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((𝑝 − 1) / 𝑝) = (1 − (1 / 𝑝)))
226 divdiv1 10615 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1))))
227219, 165, 215, 226syl3anc 1318 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / (𝑝 − 1)) = (1 / (𝑝 · (𝑝 − 1))))
228225, 227oveq12d 6567 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((𝑝 − 1) / 𝑝) · ((1 / 𝑝) / (𝑝 − 1))) = ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))
22952nnne0d 10942 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≠ 0)
230216, 151, 229divrecd 10683 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝) · (1 / 𝑝)))
231216sqvald 12867 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝)↑2) = ((1 / 𝑝) · (1 / 𝑝)))
232230, 231eqtr4d 2647 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) / 𝑝) = ((1 / 𝑝)↑2))
233218, 228, 2323eqtr3d 2652 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))) = ((1 / 𝑝)↑2))
234213, 233breqtrrd 4611 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1)))))
235208, 211resubcld 10337 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈ ℝ)
236114nnrecred 10943 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / (𝑝 · (𝑝 − 1))) ∈ ℝ)
237 resubcl 10224 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 𝑝) ∈ ℝ) → (1 − (1 / 𝑝)) ∈ ℝ)
238133, 207, 237sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 / 𝑝)) ∈ ℝ)
239 recgt1 10798 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
24053, 120, 239syl2anc 691 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
241125, 240mpbid 221 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) < 1)
242 posdif 10400 . . . . . . . . . . 11 (((1 / 𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝑝) < 1 ↔ 0 < (1 − (1 / 𝑝))))
243207, 133, 242sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((1 / 𝑝) < 1 ↔ 0 < (1 − (1 / 𝑝))))
244241, 243mpbid 221 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 < (1 − (1 / 𝑝)))
245 ledivmul 10778 . . . . . . . . 9 (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ∈ ℝ ∧ (1 / (𝑝 · (𝑝 − 1))) ∈ ℝ ∧ ((1 − (1 / 𝑝)) ∈ ℝ ∧ 0 < (1 − (1 / 𝑝)))) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1))))))
246235, 236, 238, 244, 245syl112anc 1322 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ (((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) ≤ ((1 − (1 / 𝑝)) · (1 / (𝑝 · (𝑝 − 1))))))
247234, 246mpbird 246 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))))
248238, 244elrpd 11745 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 − (1 / 𝑝)) ∈ ℝ+)
249235, 248rerpdivcld 11779 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ∈ ℝ)
250249, 236, 126lemul2d 11792 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) ≤ (1 / (𝑝 · (𝑝 − 1))) ↔ ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))) ≤ ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1))))))
251247, 250mpbid 221 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))) ≤ ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1)))))
252128adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℂ)
253195nncnd 10913 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℂ)
254195nnne0d 10942 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ≠ 0)
255252, 253, 254divrecd 10683 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · (1 / (𝑝𝑘))))
256151adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ)
25752adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
258257nnne0d 10942 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑝 ≠ 0)
259 nnz 11276 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
260259adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
261256, 258, 260exprecd 12878 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
262261oveq2d 6565 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (1 / (𝑝𝑘))))
263255, 262eqtr4d 2647 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ ℕ) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
264174, 263sylan2 490 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
265264sumeq2dv 14281 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
266174nnnn0d 11228 . . . . . . . . 9 (𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ0)
267 expcl 12740 . . . . . . . . 9 (((1 / 𝑝) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
268216, 266, 267syl2an 493 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
269192, 128, 268fsummulc2 14358 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
270 fzval3 12404 . . . . . . . . . . 11 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
271203, 270syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (2...(⌊‘((log‘𝐴) / (log‘𝑝)))) = (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1)))
272271sumeq1d 14279 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
273207, 241ltned 10052 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1 / 𝑝) ≠ 1)
274 2nn0 11186 . . . . . . . . . . 11 2 ∈ ℕ0
275274a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 2 ∈ ℕ0)
276 eluzp1p1 11589 . . . . . . . . . . . 12 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ (ℤ‘1) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘(1 + 1)))
277140, 276syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘(1 + 1)))
278 df-2 10956 . . . . . . . . . . . 12 2 = (1 + 1)
279278fveq2i 6106 . . . . . . . . . . 11 (ℤ‘2) = (ℤ‘(1 + 1))
280277, 279syl6eleqr 2699 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) + 1) ∈ (ℤ‘2))
281216, 273, 275, 280geoserg 14437 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2..^((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
282272, 281eqtrd 2644 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
283282oveq2d 6565 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))))
284265, 269, 2833eqtr2d 2650 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) = ((log‘𝑝) · ((((1 / 𝑝)↑2) − ((1 / 𝑝)↑((⌊‘((log‘𝐴) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝)))))
285114nncnd 10913 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ∈ ℂ)
286114nnne0d 10942 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 · (𝑝 − 1)) ≠ 0)
287128, 285, 286divrecd 10683 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) = ((log‘𝑝) · (1 / (𝑝 · (𝑝 − 1)))))
288251, 284, 2873brtr4d 4615 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (2...(⌊‘((log‘𝐴) / (log‘𝑝))))((log‘𝑝) / (𝑝𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
289201, 288eqbrtrd 4605 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
29086, 108, 115, 289fsumle 14372 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))))
291 elfzuz 12209 . . . . . . . . . . 11 (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈ (ℤ‘2))
292 eluz2nn 11602 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℕ)
293291, 292syl 17 . . . . . . . . . 10 (𝑝 ∈ (2...((abs‘𝐴) + 1)) → 𝑝 ∈ ℕ)
294293adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ ℕ)
295294nnred 10912 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ ℝ)
296291adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 𝑝 ∈ (ℤ‘2))
297 eluz2b2 11637 . . . . . . . . . 10 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
298297simprbi 479 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
299296, 298syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 1 < 𝑝)
300295, 299rplogcld 24179 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (log‘𝑝) ∈ ℝ+)
301296, 112syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 − 1) ∈ ℕ)
302294, 301nnmulcld 10945 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈ ℕ)
303302nnrpd 11746 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → (𝑝 · (𝑝 − 1)) ∈ ℝ+)
304300, 303rpdivcld 11765 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ+)
305304rpred 11748 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → ((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
30647, 305fsumrecl 14312 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ∈ ℝ)
307304rpge0d 11752 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (2...((abs‘𝐴) + 1))) → 0 ≤ ((log‘𝑝) / (𝑝 · (𝑝 − 1))))
30847, 305, 307, 84fsumless 14369 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))))
309 rplogsumlem1 24973 . . . . 5 (((abs‘𝐴) + 1) ∈ ℕ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
31077, 309syl 17 . . . 4 (𝐴 ∈ ℤ → Σ𝑝 ∈ (2...((abs‘𝐴) + 1))((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
311116, 306, 118, 308, 310letrd 10073 . . 3 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) / (𝑝 · (𝑝 − 1))) ≤ 2)
312109, 116, 118, 290, 311letrd 10073 . 2 (𝐴 ∈ ℤ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(((Λ‘(𝑝𝑘)) − if((𝑝𝑘) ∈ ℙ, (log‘(𝑝𝑘)), 0)) / (𝑝𝑘)) ≤ 2)
31346, 312eqbrtrd 4605 1 (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cin 3539  wss 3540  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cq 11664  +crp 11708  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  cfl 12453  cexp 12722  abscabs 13822  Σcsu 14264  cprime 15223  logclog 24105  Λcvma 24618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-vma 24624
This theorem is referenced by:  rplogsum  25016
  Copyright terms: Public domain W3C validator