MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   GIF version

Theorem rplogsumlem1 24973
Description: Lemma for rplogsum 25016. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12634 . . 3 (𝐴 ∈ ℕ → (2...𝐴) ∈ Fin)
2 elfzuz 12209 . . . . . . . 8 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ (ℤ‘2))
3 eluz2nn 11602 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ)
65nnrpd 11746 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+)
76relogcld 24173 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ)
82adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ (ℤ‘2))
9 uz2m1nn 11639 . . . . . 6 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ)
115, 10nnmulcld 10945 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ)
127, 11nndivred 10946 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
131, 12fsumrecl 14312 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
14 2re 10967 . . . . 5 2 ∈ ℝ
1510nnrpd 11746 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ+)
1615rpsqrtcld 13998 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ+)
17 rerpdivcl 11737 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
1814, 16, 17sylancr 694 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
196rpsqrtcld 13998 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ+)
20 rerpdivcl 11737 . . . . 5 ((2 ∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 / (√‘𝑛)) ∈ ℝ)
2114, 19, 20sylancr 694 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈ ℝ)
2218, 21resubcld 10337 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
231, 22fsumrecl 14312 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
2414a1i 11 . 2 (𝐴 ∈ ℕ → 2 ∈ ℝ)
2516rpred 11748 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ)
265nnred 10912 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ)
27 peano2rem 10227 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ)
2926, 28remulcld 9949 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ)
3029, 22remulcld 9949 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) ∈ ℝ)
315nncnd 10913 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ)
32 ax-1cn 9873 . . . . . . . 8 1 ∈ ℂ
33 npcan 10169 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3431, 32, 33sylancl 693 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛)
3534fveq2d 6107 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
3615rpge0d 11752 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1))
37 loglesqrt 24299 . . . . . . 7 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3828, 36, 37syl2anc 691 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3935, 38eqbrtrrd 4607 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1)))
4019rpred 11748 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ)
4140, 25readdcld 9948 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈ ℝ)
42 remulcl 9900 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈ ℝ)
4340, 14, 42sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈ ℝ)
4440, 25resubcld 10337 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ)
4526lem1d 10836 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛)
466rpge0d 11752 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛)
4728, 36, 26, 46sqrtled 14013 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
4845, 47mpbid 221 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛))
4940, 25subge0d 10496 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
5048, 49mpbird 246 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))))
5125, 40, 40, 48leadd2dd 10521 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛)))
5219rpcnd 11750 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ)
5352times2d 11153 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛)))
5451, 53breqtrrd 4611 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2))
5541, 43, 44, 50, 54lemul1ad 10842 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
5631sqsqrtd 14026 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛)
57 subcl 10159 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
5831, 32, 57sylancl 693 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ)
5958sqsqrtd 14026 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1))
6056, 59oveq12d 6567 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (𝑛 − (𝑛 − 1)))
6116rpcnd 11750 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ)
62 subsq 12834 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
6352, 61, 62syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
64 nncan 10189 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑛 − 1)) = 1)
6531, 32, 64sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1)
6660, 63, 653eqtr3d 2652 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = 1)
67 2cn 10968 . . . . . . . . . . 11 2 ∈ ℂ
6867a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ)
6944recnd 9947 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℂ)
7052, 68, 69mulassd 9942 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
7155, 66, 703brtr3d 4614 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
72 1red 9934 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ)
73 remulcl 9900 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7414, 44, 73sylancr 694 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7540, 74remulcld 9949 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈ ℝ)
7672, 75, 16lemul1d 11791 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1)))))
7771, 76mpbid 221 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))))
7861mulid2d 9937 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) = (√‘(𝑛 − 1)))
7974recnd 9947 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℂ)
8052, 79, 61mul32d 10125 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
8177, 78, 803brtr3d 4614 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
82 remsqsqrt 13845 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
8326, 46, 82syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
84 remsqsqrt 13845 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8528, 36, 84syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8683, 85oveq12d 6567 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1)))
8752, 52, 61, 61mul4d 10127 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8886, 87eqtr3d 2646 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8916rpcnne0d 11757 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0))
9019rpcnne0d 11757 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))
91 divsubdiv 10620 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9268, 68, 89, 90, 91syl22anc 1319 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9368, 52, 61subdid 10365 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))))
9452, 61mulcomd 9940 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) · (√‘𝑛)))
9593, 94oveq12d 6567 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9692, 95eqtr4d 2647 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))
9788, 96oveq12d 6567 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))))
9852, 61mulcld 9939 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℂ)
9919, 16rpmulcld 11764 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℝ+)
10074, 99rerpdivcld 11779 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℝ)
101100recnd 9947 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℂ)
10298, 98, 101mulassd 9942 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))))
10399rpne0d 11753 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0)
10479, 98, 103divcan2d 10682 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))
105104oveq2d 6565 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10697, 102, 1053eqtrd 2648 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10781, 106breqtrrd 4611 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
1087, 25, 30, 39, 107letrd 10073 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
10911nngt0d 10941 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1)))
110 ledivmul 10778 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ ∧ ((𝑛 · (𝑛 − 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 − 1)))) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
1117, 22, 29, 109, 110syl112anc 1322 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
112108, 111mpbird 246 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
1131, 12, 22, 112fsumle 14372 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
114 oveq1 6556 . . . . . . 7 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
115114fveq2d 6107 . . . . . 6 (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1)))
116115oveq2d 6565 . . . . 5 (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 / (√‘(𝑛 − 1))))
117 oveq1 6556 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑘 − 1) = ((𝑛 + 1) − 1))
118117fveq2d 6107 . . . . . 6 (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) = (√‘((𝑛 + 1) − 1)))
119118oveq2d 6565 . . . . 5 (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝑛 + 1) − 1))))
120 oveq1 6556 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 − 1) = (2 − 1))
121 2m1e1 11012 . . . . . . . . . 10 (2 − 1) = 1
122120, 121syl6eq 2660 . . . . . . . . 9 (𝑘 = 2 → (𝑘 − 1) = 1)
123122fveq2d 6107 . . . . . . . 8 (𝑘 = 2 → (√‘(𝑘 − 1)) = (√‘1))
124 sqrt1 13860 . . . . . . . 8 (√‘1) = 1
125123, 124syl6eq 2660 . . . . . . 7 (𝑘 = 2 → (√‘(𝑘 − 1)) = 1)
126125oveq2d 6565 . . . . . 6 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = (2 / 1))
12767div1i 10632 . . . . . 6 (2 / 1) = 2
128126, 127syl6eq 2660 . . . . 5 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = 2)
129 oveq1 6556 . . . . . . 7 (𝑘 = (𝐴 + 1) → (𝑘 − 1) = ((𝐴 + 1) − 1))
130129fveq2d 6107 . . . . . 6 (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) = (√‘((𝐴 + 1) − 1)))
131130oveq2d 6565 . . . . 5 (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝐴 + 1) − 1))))
132 nnz 11276 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
133 eluzp1p1 11589 . . . . . . 7 (𝐴 ∈ (ℤ‘1) → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
134 nnuz 11599 . . . . . . 7 ℕ = (ℤ‘1)
135133, 134eleq2s 2706 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
136 df-2 10956 . . . . . . 7 2 = (1 + 1)
137136fveq2i 6106 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
138135, 137syl6eleqr 2699 . . . . 5 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘2))
139 elfzuz 12209 . . . . . . . . . . 11 (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈ (ℤ‘2))
140 uz2m1nn 11639 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℕ)
141139, 140syl 17 . . . . . . . . . 10 (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ)
142141adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ)
143142nnrpd 11746 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℝ+)
144143rpsqrtcld 13998 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈ ℝ+)
145 rerpdivcl 11737 . . . . . . 7 ((2 ∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
14614, 144, 145sylancr 694 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
147146recnd 9947 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℂ)
148116, 119, 128, 131, 132, 138, 147telfsum 14377 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1)))))
149 pncan 10166 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
15031, 32, 149sylancl 693 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛)
151150fveq2d 6107 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) = (√‘𝑛))
152151oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 / (√‘𝑛)))
153152oveq2d 6565 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
154153sumeq2dv 14281 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
155 nncn 10905 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
156 pncan 10166 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
157155, 32, 156sylancl 693 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
158157fveq2d 6107 . . . . . 6 (𝐴 ∈ ℕ → (√‘((𝐴 + 1) − 1)) = (√‘𝐴))
159158oveq2d 6565 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘((𝐴 + 1) − 1))) = (2 / (√‘𝐴)))
160159oveq2d 6565 . . . 4 (𝐴 ∈ ℕ → (2 − (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 / (√‘𝐴))))
161148, 154, 1603eqtr3d 2652 . . 3 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (2 − (2 / (√‘𝐴))))
162 2rp 11713 . . . . . 6 2 ∈ ℝ+
163 nnrp 11718 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
164163rpsqrtcld 13998 . . . . . 6 (𝐴 ∈ ℕ → (√‘𝐴) ∈ ℝ+)
165 rpdivcl 11732 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 / (√‘𝐴)) ∈ ℝ+)
166162, 164, 165sylancr 694 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ+)
167166rpge0d 11752 . . . 4 (𝐴 ∈ ℕ → 0 ≤ (2 / (√‘𝐴)))
168166rpred 11748 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ)
169 subge02 10423 . . . . 5 ((2 ∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
17014, 168, 169sylancr 694 . . . 4 (𝐴 ∈ ℕ → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
171167, 170mpbid 221 . . 3 (𝐴 ∈ ℕ → (2 − (2 / (√‘𝐴))) ≤ 2)
172161, 171eqbrtrd 4605 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ≤ 2)
17313, 23, 24, 113, 172letrd 10073 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cuz 11563  +crp 11708  ...cfz 12197  cexp 12722  csqrt 13821  Σcsu 14264  logclog 24105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  rplogsumlem2  24974
  Copyright terms: Public domain W3C validator