Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-misc1-frege | Structured version Visualization version GIF version |
Description: Double-use of ax-frege2 37105. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rp-misc1-frege | ⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege2 37105 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
2 | ax-frege2 37105 | . 2 ⊢ (((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) → (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege2 37105 |
This theorem is referenced by: rp-4frege 37116 |
Copyright terms: Public domain | W3C validator |