Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-frege24 Structured version   Visualization version   GIF version

Theorem rp-frege24 37111
Description: Introducing an embedded antecedent. Alternate proof for frege24 37129. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-frege24 ((𝜑𝜓) → (𝜑 → (𝜒𝜓)))

Proof of Theorem rp-frege24
StepHypRef Expression
1 rp-simp2-frege 37106 . 2 (𝜑 → (𝜓 → (𝜒𝜓)))
2 ax-frege2 37105 . 2 ((𝜑 → (𝜓 → (𝜒𝜓))) → ((𝜑𝜓) → (𝜑 → (𝜒𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → (𝜑 → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 37104  ax-frege2 37105
This theorem is referenced by:  rp-7frege  37115  rp-frege25  37119
  Copyright terms: Public domain W3C validator