Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-fakeuninass Structured version   Visualization version   GIF version

Theorem rp-fakeuninass 36881
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by Richard Penner, 29-Feb-2020.)
Assertion
Ref Expression
rp-fakeuninass (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))

Proof of Theorem rp-fakeuninass
StepHypRef Expression
1 rp-fakeinunass 36880 . 2 (𝐴𝐶 ↔ ((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)))
2 eqcom 2617 . 2 (((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)) ↔ (𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴))
3 incom 3767 . . . 4 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
4 uncom 3719 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54ineq1i 3772 . . . 4 ((𝐵𝐴) ∩ 𝐶) = ((𝐴𝐵) ∩ 𝐶)
63, 5eqtri 2632 . . 3 (𝐶 ∩ (𝐵𝐴)) = ((𝐴𝐵) ∩ 𝐶)
7 uncom 3719 . . . 4 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶𝐵))
8 incom 3767 . . . . 5 (𝐶𝐵) = (𝐵𝐶)
98uneq2i 3726 . . . 4 (𝐴 ∪ (𝐶𝐵)) = (𝐴 ∪ (𝐵𝐶))
107, 9eqtri 2632 . . 3 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵𝐶))
116, 10eqeq12i 2624 . 2 ((𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴) ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
121, 2, 113bitri 285 1 (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  cun 3538  cin 3539  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-ss 3554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator