Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-7frege | Structured version Visualization version GIF version |
Description: Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
rp-7frege | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege2 37105 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
2 | rp-frege24 37111 | . 2 ⊢ (((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 37104 ax-frege2 37105 |
This theorem is referenced by: axfrege8 37121 |
Copyright terms: Public domain | W3C validator |