Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-7frege Structured version   Visualization version   GIF version

Theorem rp-7frege 37115
Description: Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-7frege ((𝜑 → (𝜓𝜒)) → (𝜃 → ((𝜑𝜓) → (𝜑𝜒))))

Proof of Theorem rp-7frege
StepHypRef Expression
1 ax-frege2 37105 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
2 rp-frege24 37111 . 2 (((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑 → (𝜓𝜒)) → (𝜃 → ((𝜑𝜓) → (𝜑𝜒)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → (𝜃 → ((𝜑𝜓) → (𝜑𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 37104  ax-frege2 37105
This theorem is referenced by:  axfrege8  37121
  Copyright terms: Public domain W3C validator