Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-4frege | Structured version Visualization version GIF version |
Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
rp-4frege | ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-simp2-frege 37106 | . 2 ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → (𝜓 → 𝜑))) | |
2 | rp-misc1-frege 37110 | . 2 ⊢ (((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → (𝜓 → 𝜑))) → ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 37104 ax-frege2 37105 |
This theorem is referenced by: rp-6frege 37117 |
Copyright terms: Public domain | W3C validator |