Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmpt2ss | Structured version Visualization version GIF version |
Description: The range of an operation given by the "maps to" notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
rnmpt2ss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmpt2ss | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt2ss.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpt2 6668 | . . . 4 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | abeq2i 2722 | . . 3 ⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) |
4 | simpl 472 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) | |
5 | simpr 476 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) | |
6 | 4, 5 | r19.29d2r 3061 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶)) |
7 | eleq1 2676 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
8 | 7 | biimparc 503 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷)) |
10 | 9 | rexlimivv 3018 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
12 | 11 | ex 449 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
13 | 3, 12 | syl5bi 231 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ 𝐷)) |
14 | 13 | ssrdv 3574 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 ran crn 5039 ↦ cmpt2 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-cnv 5046 df-dm 5048 df-rn 5049 df-oprab 6553 df-mpt2 6554 |
This theorem is referenced by: raddcn 29303 br2base 29658 sxbrsiga 29679 |
Copyright terms: Public domain | W3C validator |