Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   GIF version

Theorem rngoisoco 32951
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 32949 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
213expa 1257 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
323adantl3 1212 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
4 rngoisohom 32949 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
543expa 1257 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
653adantl1 1210 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
73, 6anim12da 32676 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)))
8 rngohomco 32943 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
97, 8syldan 486 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
10 eqid 2610 . . . . . . 7 (1st𝑆) = (1st𝑆)
11 eqid 2610 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
12 eqid 2610 . . . . . . 7 (1st𝑇) = (1st𝑇)
13 eqid 2610 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
1410, 11, 12, 13rngoiso1o 32948 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
15143expa 1257 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
16153adantl1 1210 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
1716adantrl 748 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
18 eqid 2610 . . . . . . 7 (1st𝑅) = (1st𝑅)
19 eqid 2610 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
2018, 19, 10, 11rngoiso1o 32948 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
21203expa 1257 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
22213adantl3 1212 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
2322adantrr 749 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
24 f1oco 6072 . . 3 ((𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2517, 23, 24syl2anc 691 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2618, 19, 12, 13isrngoiso 32947 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
27263adant2 1073 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
2827adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
299, 25, 28mpbir2and 959 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  ran crn 5039  ccom 5042  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1st c1st 7057  RingOpscrngo 32863   RngHom crnghom 32929   RngIso crngiso 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-grpo 26731  df-gid 26732  df-ablo 26783  df-ass 32812  df-exid 32814  df-mgmOLD 32818  df-sgrOLD 32830  df-mndo 32836  df-rngo 32864  df-rngohom 32932  df-rngoiso 32945
This theorem is referenced by:  riscer  32957
  Copyright terms: Public domain W3C validator