Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoideu Structured version   Visualization version   GIF version

Theorem rngoideu 32872
Description: The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoideu (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝐻,𝑥   𝑢,𝑋,𝑥   𝑢,𝑅,𝑥

Proof of Theorem rngoideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringi.2 . . . . 5 𝐻 = (2nd𝑅)
3 ringi.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3rngoi 32868 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢𝑋𝑥𝑋𝑦𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))))
54simprrd 793 . . 3 (𝑅 ∈ RingOps → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
6 simpl 472 . . . . . . . 8 (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑥) = 𝑥)
76ralimi 2936 . . . . . . 7 (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥)
8 oveq2 6557 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑢𝐻𝑥) = (𝑢𝐻𝑦))
9 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
108, 9eqeq12d 2625 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑦))
1110rspcv 3278 . . . . . . 7 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥 → (𝑢𝐻𝑦) = 𝑦))
127, 11syl5 33 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑦) = 𝑦))
13 simpr 476 . . . . . . . 8 (((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑥𝐻𝑦) = 𝑥)
1413ralimi 2936 . . . . . . 7 (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥)
15 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥𝐻𝑦) = (𝑢𝐻𝑦))
16 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
1715, 16eqeq12d 2625 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥𝐻𝑦) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑢))
1817rspcv 3278 . . . . . . 7 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥 → (𝑢𝐻𝑦) = 𝑢))
1914, 18syl5 33 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑢𝐻𝑦) = 𝑢))
2012, 19im2anan9r 877 . . . . 5 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → ((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢)))
21 eqtr2 2630 . . . . . 6 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑦 = 𝑢)
2221eqcomd 2616 . . . . 5 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑢 = 𝑦)
2320, 22syl6 34 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦))
2423rgen2a 2960 . . 3 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)
255, 24jctir 559 . 2 (𝑅 ∈ RingOps → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
26 oveq1 6556 . . . . . 6 (𝑢 = 𝑦 → (𝑢𝐻𝑥) = (𝑦𝐻𝑥))
2726eqeq1d 2612 . . . . 5 (𝑢 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑦𝐻𝑥) = 𝑥))
28 oveq2 6557 . . . . . 6 (𝑢 = 𝑦 → (𝑥𝐻𝑢) = (𝑥𝐻𝑦))
2928eqeq1d 2612 . . . . 5 (𝑢 = 𝑦 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝑥𝐻𝑦) = 𝑥))
3027, 29anbi12d 743 . . . 4 (𝑢 = 𝑦 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
3130ralbidv 2969 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
3231reu4 3367 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
3325, 32sylibr 223 1 (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  AbelOpcablo 26782  RingOpscrngo 32863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060  df-rngo 32864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator