Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngmgmbs4 Structured version   Visualization version   GIF version

Theorem rngmgmbs4 32900
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
rngmgmbs4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem rngmgmbs4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.12 3045 . . . . 5 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
2 simpl 472 . . . . . . . . 9 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
32eqcomd 2616 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥))
4 oveq2 6557 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥))
54eqeq2d 2620 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 = (𝑢𝐺𝑦) ↔ 𝑥 = (𝑢𝐺𝑥)))
65rspcev 3282 . . . . . . . . 9 ((𝑥𝑋𝑥 = (𝑢𝐺𝑥)) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
76ex 449 . . . . . . . 8 (𝑥𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
83, 7syl5 33 . . . . . . 7 (𝑥𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
98reximdv 2999 . . . . . 6 (𝑥𝑋 → (∃𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
109ralimia 2934 . . . . 5 (∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
111, 10syl 17 . . . 4 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
1211anim2i 591 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
13 foov 6706 . . 3 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
1412, 13sylibr 223 . 2 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
15 forn 6031 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
1614, 15syl 17 1 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   × cxp 5036  ran crn 5039  wf 5800  ontowfo 5802  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-ov 6552
This theorem is referenced by:  rngorn1eq  32903
  Copyright terms: Public domain W3C validator