Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnglz Structured version   Visualization version   GIF version

Theorem rnglz 41674
 Description: The zero of a nonunital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 41667 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablgrp 18021 . . . . . . 7 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
4 rngcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
5 rnglz.z . . . . . . . 8 0 = (0g𝑅)
64, 5grpidcl 17273 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
7 eqid 2610 . . . . . . . 8 (+g𝑅) = (+g𝑅)
84, 7, 5grplid 17275 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
96, 8mpdan 699 . . . . . 6 (𝑅 ∈ Grp → ( 0 (+g𝑅) 0 ) = 0 )
103, 9syl 17 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
1110adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
1211oveq1d 6564 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
13 simpl 472 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Rng)
143, 6syl 17 . . . . . . 7 (𝑅 ∈ Rng → 0𝐵)
1514, 14jca 553 . . . . . 6 (𝑅 ∈ Rng → ( 0𝐵0𝐵))
1615anim1i 590 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0𝐵0𝐵) ∧ 𝑋𝐵))
17 df-3an 1033 . . . . 5 (( 0𝐵0𝐵𝑋𝐵) ↔ (( 0𝐵0𝐵) ∧ 𝑋𝐵))
1816, 17sylibr 223 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
19 rngcl.t . . . . 5 · = (.r𝑅)
204, 7, 19rngdir 41672 . . . 4 ((𝑅 ∈ Rng ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
2113, 18, 20syl2anc 691 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
223adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
2314adantr 480 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
24 simpr 476 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
254, 19rngcl 41673 . . . . 5 ((𝑅 ∈ Rng ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2613, 23, 24, 25syl3anc 1318 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
274, 7, 5grprid 17276 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2827eqcomd 2616 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2922, 26, 28syl2anc 691 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
3012, 21, 293eqtr3d 2652 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
314, 7grplcan 17300 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3222, 26, 23, 26, 31syl13anc 1320 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3330, 32mpbid 221 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  Abelcabl 18017  Rngcrng 41664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-abl 18019  df-mgp 18313  df-rng0 41665 This theorem is referenced by:  zrrnghm  41707
 Copyright terms: Public domain W3C validator