Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngimrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
Ref | Expression |
---|---|
rngimrcl | ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rngisom 41678 | . 2 ⊢ RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHomo 𝑟)}) | |
2 | 1 | elmpt2cl 6774 | 1 ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 {crab 2900 Vcvv 3173 ◡ccnv 5037 (class class class)co 6549 RngHomo crngh 41675 RngIsom crngs 41676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-dm 5048 df-iota 5768 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-rngisom 41678 |
This theorem is referenced by: rngimf1o 41695 rngimrnghm 41696 |
Copyright terms: Public domain | W3C validator |