Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Visualization version   GIF version

Theorem rmxdioph 36601
 Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmxdioph
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘1) ∈ (ℤ‘2))
2 elmapi 7765 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
3 df-3 10957 . . . . . . . . . 10 3 = (2 + 1)
4 ssid 3587 . . . . . . . . . 10 (1...3) ⊆ (1...3)
53, 4jm2.27dlem5 36598 . . . . . . . . 9 (1...2) ⊆ (1...3)
6 2nn 11062 . . . . . . . . . 10 2 ∈ ℕ
76jm2.27dlem3 36596 . . . . . . . . 9 2 ∈ (1...2)
85, 7sselii 3565 . . . . . . . 8 2 ∈ (1...3)
9 ffvelrn 6265 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
102, 8, 9sylancl 693 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
1110adantr 480 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘2) ∈ ℕ0)
12 3nn 11063 . . . . . . . . 9 3 ∈ ℕ
1312jm2.27dlem3 36596 . . . . . . . 8 3 ∈ (1...3)
14 ffvelrn 6265 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
152, 13, 14sylancl 693 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘3) ∈ ℕ0)
1615adantr 480 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘3) ∈ ℕ0)
17 rmxdiophlem 36600 . . . . . 6 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ0 ∧ (𝑎‘3) ∈ ℕ0) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
181, 11, 16, 17syl3anc 1318 . . . . 5 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
1918pm5.32da 671 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))))
20 anass 679 . . . . . 6 ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2120rexbii 3023 . . . . 5 (∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
22 r19.42v 3073 . . . . 5 (∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2321, 22bitr2i 264 . . . 4 (((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))
2419, 23syl6bb 275 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2524rabbiia 3161 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)}
26 3nn0 11187 . . 3 3 ∈ ℕ0
27 vex 3176 . . . . . . . 8 𝑐 ∈ V
2827resex 5363 . . . . . . 7 (𝑐 ↾ (1...3)) ∈ V
29 fvex 6113 . . . . . . 7 (𝑐‘4) ∈ V
30 df-2 10956 . . . . . . . . . . . . . 14 2 = (1 + 1)
3130, 5jm2.27dlem5 36598 . . . . . . . . . . . . 13 (1...1) ⊆ (1...3)
32 1nn 10908 . . . . . . . . . . . . . 14 1 ∈ ℕ
3332jm2.27dlem3 36596 . . . . . . . . . . . . 13 1 ∈ (1...1)
3431, 33sselii 3565 . . . . . . . . . . . 12 1 ∈ (1...3)
3534jm2.27dlem1 36594 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘1) = (𝑐‘1))
3635eleq1d 2672 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
3736adantr 480 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
38 simpr 476 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → 𝑏 = (𝑐‘4))
398jm2.27dlem1 36594 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘2) = (𝑐‘2))
4035, 39oveq12d 6567 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4140adantr 480 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4238, 41eqeq12d 2625 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
4337, 42anbi12d 743 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
4413jm2.27dlem1 36594 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘3) = (𝑐‘3))
4544oveq1d 6564 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4645adantr 480 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4735oveq1d 6564 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑐‘1)↑2))
4847oveq1d 6564 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑐‘1)↑2) − 1))
49 oveq1 6556 . . . . . . . . . . 11 (𝑏 = (𝑐‘4) → (𝑏↑2) = ((𝑐‘4)↑2))
5048, 49oveqan12d 6568 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1)↑2) − 1) · (𝑏↑2)) = ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))
5146, 50oveq12d 6567 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))))
5251eqeq1d 2612 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1 ↔ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5343, 52anbi12d 743 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5428, 29, 53sbc2ie 3472 . . . . . 6 ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5554a1i 11 . . . . 5 (𝑐 ∈ (ℕ0𝑚 (1...4)) → ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5655rabbiia 3161 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} = {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)}
57 4nn0 11188 . . . . . 6 4 ∈ ℕ0
58 rmydioph 36599 . . . . . 6 {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
59 simp1 1054 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘1) = (𝑐‘1))
6059eleq1d 2672 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
61 simp3 1056 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘3) = (𝑐‘4))
62 simp2 1055 . . . . . . . . . 10 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘2) = (𝑐‘2))
6359, 62oveq12d 6567 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
6461, 63eqeq12d 2625 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
6560, 64anbi12d 743 . . . . . . 7 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
66 df-4 10958 . . . . . . . . . . 11 4 = (3 + 1)
67 ssid 3587 . . . . . . . . . . 11 (1...4) ⊆ (1...4)
6866, 67jm2.27dlem5 36598 . . . . . . . . . 10 (1...3) ⊆ (1...4)
693, 68jm2.27dlem5 36598 . . . . . . . . 9 (1...2) ⊆ (1...4)
7030, 69jm2.27dlem5 36598 . . . . . . . 8 (1...1) ⊆ (1...4)
7170, 33sselii 3565 . . . . . . 7 1 ∈ (1...4)
7269, 7sselii 3565 . . . . . . 7 2 ∈ (1...4)
73 4nn 11064 . . . . . . . 8 4 ∈ ℕ
7473jm2.27dlem3 36596 . . . . . . 7 4 ∈ (1...4)
7565, 71, 72, 74rabren3dioph 36397 . . . . . 6 ((4 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4))
7657, 58, 75mp2an 704 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4)
77 ovex 6577 . . . . . . . . 9 (1...4) ∈ V
7868, 13sselii 3565 . . . . . . . . 9 3 ∈ (1...4)
79 mzpproj 36318 . . . . . . . . 9 (((1...4) ∈ V ∧ 3 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)))
8077, 78, 79mp2an 704 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4))
81 2nn0 11186 . . . . . . . 8 2 ∈ ℕ0
82 mzpexpmpt 36326 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)))
8380, 81, 82mp2an 704 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4))
84 mzpproj 36318 . . . . . . . . . . 11 (((1...4) ∈ V ∧ 1 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)))
8577, 71, 84mp2an 704 . . . . . . . . . 10 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4))
86 mzpexpmpt 36326 . . . . . . . . . 10 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)))
8785, 81, 86mp2an 704 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4))
88 1z 11284 . . . . . . . . . 10 1 ∈ ℤ
89 mzpconstmpt 36321 . . . . . . . . . 10 (((1...4) ∈ V ∧ 1 ∈ ℤ) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4)))
9077, 88, 89mp2an 704 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))
91 mzpsubmpt 36324 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)))
9287, 90, 91mp2an 704 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4))
93 mzpproj 36318 . . . . . . . . . 10 (((1...4) ∈ V ∧ 4 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)))
9477, 74, 93mp2an 704 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4))
95 mzpexpmpt 36326 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4)))
9694, 81, 95mp2an 704 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))
97 mzpmulmpt 36323 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4)))
9892, 96, 97mp2an 704 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))
99 mzpsubmpt 36324 . . . . . . 7 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)))
10083, 98, 99mp2an 704 . . . . . 6 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4))
101 eqrabdioph 36359 . . . . . 6 ((4 ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4))
10257, 100, 90, 101mp3an 1416 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)
103 anrabdioph 36362 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4) ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4))
10476, 102, 103mp2an 704 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4)
10556, 104eqeltri 2684 . . 3 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)
10666rexfrabdioph 36377 . . 3 ((3 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3))
10726, 105, 106mp2an 704 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3)
10825, 107eqeltri 2684 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {crab 2900  Vcvv 3173  [wsbc 3402   ↦ cmpt 4643   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  1c1 9816   · cmul 9820   − cmin 10145  2c2 10947  3c3 10948  4c4 10949  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  mzPolycmzp 36303  Diophcdioph 36336   Xrm crmx 36482   Yrm crmy 36483 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-mzpcl 36304  df-mzp 36305  df-dioph 36337  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485 This theorem is referenced by:  expdiophlem2  36607
 Copyright terms: Public domain W3C validator