MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1 Structured version   Visualization version   GIF version

Theorem rmoeq1 3118
Description: Equality theorem for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoeq1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoeq1
StepHypRef Expression
1 nfcv 2751 . 2 𝑥𝐴
2 nfcv 2751 . 2 𝑥𝐵
31, 2rmoeq1f 3114 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  ∃*wrmo 2899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rmo 2904
This theorem is referenced by:  rmoeqd  3126  poimirlem2  32581
  Copyright terms: Public domain W3C validator