Proof of Theorem rmo4fOLD
Step | Hyp | Ref
| Expression |
1 | | an4 861 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
2 | | ancom 465 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
3 | 2 | anbi1i 727 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
4 | 1, 3 | bitri 263 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
5 | 4 | imbi1i 338 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
6 | | impexp 461 |
. . . . . 6
⊢ ((((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
7 | | impexp 461 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
8 | 5, 6, 7 | 3bitri 285 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
9 | 8 | albii 1737 |
. . . 4
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
10 | | df-ral 2901 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
11 | | nfcv 2751 |
. . . . . 6
⊢
Ⅎ𝑦𝑥 |
12 | | rmo4f.2 |
. . . . . 6
⊢
Ⅎ𝑦𝐴 |
13 | 11, 12 | nfel 2763 |
. . . . 5
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
14 | 13 | r19.21 2939 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
15 | 9, 10, 14 | 3bitr2i 287 |
. . 3
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
16 | 15 | albii 1737 |
. 2
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
17 | | nfv 1830 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
18 | 13, 17 | nfan 1816 |
. . . 4
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
19 | 18 | mo3 2495 |
. . 3
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦)) |
20 | | nfcv 2751 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
21 | | rmo4f.1 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐴 |
22 | 20, 21 | nfel 2763 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
23 | | rmo4f.3 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜓 |
24 | 22, 23 | nfan 1816 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
25 | | eleq1 2676 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
26 | | rmo4f.4 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
27 | 25, 26 | anbi12d 743 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
28 | 24, 27 | sbie 2396 |
. . . . . 6
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓)) |
29 | 28 | anbi2i 726 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
30 | 29 | imbi1i 338 |
. . . 4
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦)) |
31 | 30 | 2albii 1738 |
. . 3
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦)) |
32 | 19, 31 | bitri 263 |
. 2
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦)) |
33 | | df-ral 2901 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
34 | 16, 32, 33 | 3bitr4i 291 |
1
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |