Proof of Theorem rmo3f
Step | Hyp | Ref
| Expression |
1 | | df-rmo 2904 |
. 2
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
2 | | sban 2387 |
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
3 | | rmo3f.1 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝐴 |
4 | 3 | clelsb3f 28704 |
. . . . . . . . . . . 12
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
5 | 4 | anbi1i 727 |
. . . . . . . . . . 11
⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
6 | 2, 5 | bitri 263 |
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
7 | 6 | anbi2i 726 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
8 | | an4 861 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
9 | | ancom 465 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
10 | 9 | anbi1i 727 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
11 | 7, 8, 10 | 3bitri 285 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
12 | 11 | imbi1i 338 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦)) |
13 | | impexp 461 |
. . . . . . 7
⊢ ((((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
14 | | impexp 461 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
15 | 12, 13, 14 | 3bitri 285 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
16 | 15 | albii 1737 |
. . . . 5
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
17 | | df-ral 2901 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
18 | | rmo3f.2 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
19 | 18 | nfcri 2745 |
. . . . . 6
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
20 | 19 | r19.21 2939 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
21 | 16, 17, 20 | 3bitr2i 287 |
. . . 4
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
22 | 21 | albii 1737 |
. . 3
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
23 | | rmo3f.3 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
24 | 19, 23 | nfan 1816 |
. . . 4
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
25 | 24 | mo3 2495 |
. . 3
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦)) |
26 | | df-ral 2901 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
27 | 22, 25, 26 | 3bitr4i 291 |
. 2
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
28 | 1, 27 | bitri 263 |
1
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |