Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 19012
 Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))

Proof of Theorem rlmval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊))
2 fveq2 6103 . . . 4 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
31, 2fveq12d 6109 . . 3 (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
4 df-rgmod 18994 . . 3 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
5 fvex 6113 . . 3 ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V
63, 4, 5fvmpt 6191 . 2 (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
7 0fv 6137 . . . 4 (∅‘(Base‘𝑊)) = ∅
87eqcomi 2619 . . 3 ∅ = (∅‘(Base‘𝑊))
9 fvprc 6097 . . 3 𝑊 ∈ V → (ringLMod‘𝑊) = ∅)
10 fvprc 6097 . . . 4 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
1110fveq1d 6105 . . 3 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊)))
128, 9, 113eqtr4a 2670 . 2 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
136, 12pm2.61i 175 1 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  ‘cfv 5804  Basecbs 15695  subringAlg csra 18989  ringLModcrglmod 18990 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-rgmod 18994 This theorem is referenced by:  rlmval2  19015  rlmbas  19016  rlmplusg  19017  rlm0  19018  rlmmulr  19020  rlmsca  19021  rlmsca2  19022  rlmvsca  19023  rlmtopn  19024  rlmds  19025  rlmlmod  19026  rlmassa  19147  frlmip  19936  rlmnlm  22302  rlmbn  22965  rrxprds  22985
 Copyright terms: Public domain W3C validator