Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaocN | Structured version Visualization version GIF version |
Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 10879 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
riotaoc.b | ⊢ 𝐵 = (Base‘𝐾) |
riotaoc.o | ⊢ ⊥ = (oc‘𝐾) |
riotaoc.a | ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaocN | ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2751 | . . 3 ⊢ Ⅎ𝑦 ⊥ | |
2 | nfriota1 6518 | . . 3 ⊢ Ⅎ𝑦(℩𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | nffv 6110 | . 2 ⊢ Ⅎ𝑦( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) |
4 | riotaoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | riotaoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
6 | 4, 5 | opoccl 33499 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵) → ( ⊥ ‘𝑦) ∈ 𝐵) |
7 | 4, 5 | opoccl 33499 | . 2 ⊢ ((𝐾 ∈ OP ∧ (℩𝑦 ∈ 𝐵 𝜓) ∈ 𝐵) → ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) ∈ 𝐵) |
8 | riotaoc.a | . 2 ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) | |
9 | fveq2 6103 | . 2 ⊢ (𝑦 = (℩𝑦 ∈ 𝐵 𝜓) → ( ⊥ ‘𝑦) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) | |
10 | 4, 5 | opoccl 33499 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ( ⊥ ‘𝑥) ∈ 𝐵) |
11 | 4, 5 | opcon2b 33502 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑥))) |
12 | 10, 11 | reuhypd 4821 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘𝑦)) |
13 | 3, 6, 7, 8, 9, 12 | riotaxfrd 6541 | 1 ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃!wreu 2898 ‘cfv 5804 ℩crio 6510 Basecbs 15695 occoc 15776 OPcops 33477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-dm 5048 df-iota 5768 df-fv 5812 df-riota 6511 df-ov 6552 df-oposet 33481 |
This theorem is referenced by: glbconN 33681 |
Copyright terms: Public domain | W3C validator |