MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringidss Structured version   Visualization version   GIF version

Theorem ringidss 18400
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2610 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2610 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1056 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
6 eqid 2610 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7mgpbas 18318 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 15758 . . . 4 (𝐴𝐵𝐴 = (Base‘𝑀))
1093ad2ant2 1076 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
114, 10eleqtrd 2690 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
12 simp2 1055 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
1310, 12eqsstr3d 3603 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1413sselda 3568 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
15 fvex 6113 . . . . . . . 8 (Base‘𝑀) ∈ V
1610, 15syl6eqel 2696 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
17 eqid 2610 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
186, 17mgpplusg 18316 . . . . . . . 8 (.r𝑅) = (+g‘(mulGrp‘𝑅))
195, 18ressplusg 15818 . . . . . . 7 (𝐴 ∈ V → (.r𝑅) = (+g𝑀))
2016, 19syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
2120adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
2221oveqd 6566 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
23 ringidss.u . . . . . 6 1 = (1r𝑅)
247, 17, 23ringlidm 18394 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
25243ad2antl1 1216 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
2622, 25eqtr3d 2646 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
2714, 26syldan 486 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
2821oveqd 6566 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
297, 17, 23ringridm 18395 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
30293ad2antl1 1216 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
3128, 30eqtr3d 2646 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
3214, 31syldan 486 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
331, 2, 3, 11, 27, 32ismgmid2 17090 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mgp 18313  df-ur 18325  df-ring 18372
This theorem is referenced by:  unitgrpid  18492  cnmgpid  19627  xrge0iifmhm  29313
  Copyright terms: Public domain W3C validator