Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscmap2 Structured version   Visualization version   GIF version

Theorem rhmsscmap2 41811
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rhmsscmap.u (𝜑𝑈𝑉)
rhmsscmap.r (𝜑𝑅 = (Ring ∩ 𝑈))
Assertion
Ref Expression
rhmsscmap2 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rhmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . . 3 𝑅𝑅
21a1i 11 . 2 (𝜑𝑅𝑅)
3 eqid 2610 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
4 eqid 2610 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
53, 4rhmf 18549 . . . . . 6 ( ∈ (𝑎 RingHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
6 simpr 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
7 fvex 6113 . . . . . . . . . 10 (Base‘𝑏) ∈ V
8 fvex 6113 . . . . . . . . . 10 (Base‘𝑎) ∈ V
97, 8pm3.2i 470 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
10 elmapg 7757 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
119, 10mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
126, 11mpbird 246 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
1312ex 449 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
145, 13syl5 33 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RingHom 𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
1514ssrdv 3574 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
16 ovres 6698 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
1716adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
18 eqidd 2611 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
19 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
20 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2119, 20oveqan12rd 6569 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2221adantl 481 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
23 simpl 472 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
24 simpr 476 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
25 ovex 6577 . . . . . . 7 ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ∈ V
2625a1i 11 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ∈ V)
2718, 22, 23, 24, 26ovmpt2d 6686 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2827adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2915, 17, 283sstr4d 3611 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
3029ralrimivva 2954 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
31 rhmfn 41708 . . . . 5 RingHom Fn (Ring × Ring)
3231a1i 11 . . . 4 (𝜑 → RingHom Fn (Ring × Ring))
33 rhmsscmap.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
34 inss1 3795 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
3533, 34syl6eqss 3618 . . . . 5 (𝜑𝑅 ⊆ Ring)
36 xpss12 5148 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
3735, 35, 36syl2anc 691 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
38 fnssres 5918 . . . 4 (( RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3932, 37, 38syl2anc 691 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
40 eqid 2610 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))
41 ovex 6577 . . . . 5 ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) ∈ V
4240, 41fnmpt2i 7128 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅)
4342a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅))
44 incom 3767 . . . . 5 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
45 rhmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
46 inex1g 4729 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4745, 46syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Ring) ∈ V)
4844, 47syl5eqel 2692 . . . 4 (𝜑 → (Ring ∩ 𝑈) ∈ V)
4933, 48eqeltrd 2688 . . 3 (𝜑𝑅 ∈ V)
5039, 43, 49isssc 16303 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))))
512, 30, 50mpbir2and 959 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540   class class class wbr 4583   × cxp 5036  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Basecbs 15695  cat cssc 16290  Ringcrg 18370   RingHom crh 18535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-ssc 16293  df-mhm 17158  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator