Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmdvd | Structured version Visualization version GIF version |
Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
rhmdvd.u | ⊢ 𝑈 = (Unit‘𝑆) |
rhmdvd.x | ⊢ 𝑋 = (Base‘𝑅) |
rhmdvd.d | ⊢ / = (/r‘𝑆) |
rhmdvd.m | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
rhmdvd | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1054 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
2 | simp21 1087 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
3 | simp23 1089 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐶 ∈ 𝑋) | |
4 | rhmdvd.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑅) | |
5 | rhmdvd.m | . . . . 5 ⊢ · = (.r‘𝑅) | |
6 | eqid 2610 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
7 | 4, 5, 6 | rhmmul 18550 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
8 | 1, 2, 3, 7 | syl3anc 1318 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐴 · 𝐶)) = ((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶))) |
9 | simp22 1088 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐵 ∈ 𝑋) | |
10 | 4, 5, 6 | rhmmul 18550 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
11 | 1, 9, 3, 10 | syl3anc 1318 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘(𝐵 · 𝐶)) = ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) |
12 | 8, 11 | oveq12d 6567 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))) = (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶)))) |
13 | rhmrcl2 18543 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
14 | 13 | 3ad2ant1 1075 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝑆 ∈ Ring) |
15 | eqid 2610 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
16 | 4, 15 | rhmf 18549 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆)) |
17 | 16 | 3ad2ant1 1075 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → 𝐹:𝑋⟶(Base‘𝑆)) |
18 | 17, 2 | ffvelrnd 6268 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐴) ∈ (Base‘𝑆)) |
19 | simp3l 1082 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐵) ∈ 𝑈) | |
20 | simp3r 1083 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (𝐹‘𝐶) ∈ 𝑈) | |
21 | rhmdvd.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑆) | |
22 | rhmdvd.d | . . . 4 ⊢ / = (/r‘𝑆) | |
23 | 15, 21, 22, 6 | dvrcan5 29124 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ ((𝐹‘𝐴) ∈ (Base‘𝑆) ∧ (𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
24 | 14, 18, 19, 20, 23 | syl13anc 1320 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → (((𝐹‘𝐴)(.r‘𝑆)(𝐹‘𝐶)) / ((𝐹‘𝐵)(.r‘𝑆)(𝐹‘𝐶))) = ((𝐹‘𝐴) / (𝐹‘𝐵))) |
25 | 12, 24 | eqtr2d 2645 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 .rcmulr 15769 Ringcrg 18370 Unitcui 18462 /rcdvr 18505 RingHom crh 18535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-grp 17248 df-minusg 17249 df-ghm 17481 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-rnghom 18538 |
This theorem is referenced by: qqhval2lem 29353 qqhghm 29360 qqhrhm 29361 |
Copyright terms: Public domain | W3C validator |