MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxpf Structured version   Visualization version   GIF version

Theorem rexxpf 5191
Description: Version of rexxp 5186 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
ralxpf.1 𝑦𝜑
ralxpf.2 𝑧𝜑
ralxpf.3 𝑥𝜓
ralxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexxpf (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem rexxpf
StepHypRef Expression
1 ralxpf.1 . . . . . 6 𝑦𝜑
21nfn 1768 . . . . 5 𝑦 ¬ 𝜑
3 ralxpf.2 . . . . . 6 𝑧𝜑
43nfn 1768 . . . . 5 𝑧 ¬ 𝜑
5 ralxpf.3 . . . . . 6 𝑥𝜓
65nfn 1768 . . . . 5 𝑥 ¬ 𝜓
7 ralxpf.4 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
87notbid 307 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (¬ 𝜑 ↔ ¬ 𝜓))
92, 4, 6, 8ralxpf 5190 . . . 4 (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴𝑧𝐵 ¬ 𝜓)
10 ralnex 2975 . . . . 5 (∀𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧𝐵 𝜓)
1110ralbii 2963 . . . 4 (∀𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
129, 11bitri 263 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
1312notbii 309 . 2 (¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
14 dfrex2 2979 . 2 (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑)
15 dfrex2 2979 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
1613, 14, 153bitr4i 291 1 (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195   = wceq 1475  wnf 1699  wral 2896  wrex 2897  cop 4131   × cxp 5036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457  df-opab 4644  df-xp 5044  df-rel 5045
This theorem is referenced by:  iunxpf  5192  wdom2d2  36620
  Copyright terms: Public domain W3C validator