Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexxpf | Structured version Visualization version GIF version |
Description: Version of rexxp 5186 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
ralxpf.1 | ⊢ Ⅎ𝑦𝜑 |
ralxpf.2 | ⊢ Ⅎ𝑧𝜑 |
ralxpf.3 | ⊢ Ⅎ𝑥𝜓 |
ralxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexxpf | ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxpf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1768 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | ralxpf.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | nfn 1768 | . . . . 5 ⊢ Ⅎ𝑧 ¬ 𝜑 |
5 | ralxpf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1768 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | ralxpf.4 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 307 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 2, 4, 6, 8 | ralxpf 5190 | . . . 4 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓) |
10 | ralnex 2975 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
11 | 10 | ralbii 2963 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
12 | 9, 11 | bitri 263 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
13 | 12 | notbii 309 | . 2 ⊢ (¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
14 | dfrex2 2979 | . 2 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑) | |
15 | dfrex2 2979 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
16 | 13, 14, 15 | 3bitr4i 291 | 1 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 = wceq 1475 Ⅎwnf 1699 ∀wral 2896 ∃wrex 2897 〈cop 4131 × cxp 5036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-iun 4457 df-opab 4644 df-xp 5044 df-rel 5045 |
This theorem is referenced by: iunxpf 5192 wdom2d2 36620 |
Copyright terms: Public domain | W3C validator |