MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Visualization version   GIF version

Theorem rexuzre 13940
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuzre (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexuzre
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 11574 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
2 rexuz3.1 . . . . . 6 𝑍 = (ℤ𝑀)
31, 2eleq2s 2706 . . . . 5 (𝑗𝑍𝑗 ∈ ℝ)
43adantr 480 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → 𝑗 ∈ ℝ)
5 eluzelz 11573 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
65, 2eleq2s 2706 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ ℤ)
7 eluzelz 11573 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 2eleq2s 2706 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
9 eluz 11577 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
106, 8, 9syl2an 493 . . . . . . . . . 10 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
1110biimprd 237 . . . . . . . . 9 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
1211expimpd 627 . . . . . . . 8 (𝑗𝑍 → ((𝑘𝑍𝑗𝑘) → 𝑘 ∈ (ℤ𝑗)))
1312imim1d 80 . . . . . . 7 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → ((𝑘𝑍𝑗𝑘) → 𝜑)))
1413exp4a 631 . . . . . 6 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → (𝑘𝑍 → (𝑗𝑘𝜑))))
1514ralimdv2 2944 . . . . 5 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘𝑍 (𝑗𝑘𝜑)))
1615imp 444 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∀𝑘𝑍 (𝑗𝑘𝜑))
174, 16jca 553 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℝ ∧ ∀𝑘𝑍 (𝑗𝑘𝜑)))
1817reximi2 2993 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑))
19 simpl 472 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ∈ ℤ)
20 flcl 12458 . . . . . . . . . 10 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℤ)
2120adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (⌊‘𝑗) ∈ ℤ)
2221peano2zd 11361 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℤ)
2322, 19ifcld 4081 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
24 zre 11258 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
25 reflcl 12459 . . . . . . . . 9 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℝ)
26 peano2re 10088 . . . . . . . . 9 ((⌊‘𝑗) ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . 8 (𝑗 ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
28 max1 11890 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
2924, 27, 28syl2an 493 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
30 eluz2 11569 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
3119, 23, 29, 30syl3anbrc 1239 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀))
3231, 2syl6eleqr 2699 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍)
33 impexp 461 . . . . . . 7 (((𝑘𝑍𝑗𝑘) → 𝜑) ↔ (𝑘𝑍 → (𝑗𝑘𝜑)))
34 uzss 11584 . . . . . . . . . . . . 13 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3531, 34syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3635, 2syl6sseqr 3615 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ 𝑍)
3736sselda 3568 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘𝑍)
38 simplr 788 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ∈ ℝ)
3923adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
4039zred 11358 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
41 eluzelre 11574 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝑘 ∈ ℝ)
4241adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘 ∈ ℝ)
43 simpr 476 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
4427adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℝ)
4523zred 11358 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
46 fllep1 12464 . . . . . . . . . . . . . 14 (𝑗 ∈ ℝ → 𝑗 ≤ ((⌊‘𝑗) + 1))
4746adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ ((⌊‘𝑗) + 1))
48 max2 11892 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
4924, 27, 48syl2an 493 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5043, 44, 45, 47, 49letrd 10073 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5150adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
52 eluzle 11576 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5352adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5438, 40, 42, 51, 53letrd 10073 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗𝑘)
5537, 54jca 553 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → (𝑘𝑍𝑗𝑘))
5655ex 449 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → (𝑘𝑍𝑗𝑘)))
5756imim1d 80 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (((𝑘𝑍𝑗𝑘) → 𝜑) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5833, 57syl5bir 232 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((𝑘𝑍 → (𝑗𝑘𝜑)) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5958ralimdv2 2944 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
60 fveq2 6103 . . . . . . 7 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (ℤ𝑚) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
6160raleqdv 3121 . . . . . 6 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
6261rspcev 3282 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑)
6332, 59, 62syl6an 566 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
6463rexlimdva 3013 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
65 fveq2 6103 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
6665raleqdv 3121 . . . 4 (𝑚 = 𝑗 → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
6766cbvrexv 3148 . . 3 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
6864, 67syl6ib 240 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑))
6918, 68impbid2 215 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818  cle 9954  cz 11254  cuz 11563  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator