Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexunirn Structured version   Visualization version   GIF version

Theorem rexunirn 28715
Description: Restricted existential quantification over the union of the range of a function. Cf. rexrn 6269 and eluni2 4376. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
rexunirn.1 𝐹 = (𝑥𝐴𝐵)
rexunirn.2 (𝑥𝐴𝐵𝑉)
Assertion
Ref Expression
rexunirn (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rexunirn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 df-rex 2902 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
2 19.42v 1905 . . . . 5 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
3 df-rex 2902 . . . . . 6 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
43anbi2i 726 . . . . 5 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
52, 4bitr4i 266 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
65exbii 1764 . . 3 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
71, 6bitr4i 266 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
8 rexunirn.2 . . . . . . . 8 (𝑥𝐴𝐵𝑉)
9 rexunirn.1 . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
109elrnmpt1 5295 . . . . . . . 8 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
118, 10mpdan 699 . . . . . . 7 (𝑥𝐴𝐵 ∈ ran 𝐹)
12 eleq2 2677 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1312anbi1d 737 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦𝑏𝜑) ↔ (𝑦𝐵𝜑)))
1413rspcev 3282 . . . . . . 7 ((𝐵 ∈ ran 𝐹 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
1511, 14sylan 487 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
16 r19.41v 3070 . . . . . 6 (∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1715, 16sylib 207 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1817eximi 1752 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
19 df-rex 2902 . . . . 5 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(𝑦 ran 𝐹𝜑))
20 eluni2 4376 . . . . . . 7 (𝑦 ran 𝐹 ↔ ∃𝑏 ∈ ran 𝐹 𝑦𝑏)
2120anbi1i 727 . . . . . 6 ((𝑦 ran 𝐹𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2221exbii 1764 . . . . 5 (∃𝑦(𝑦 ran 𝐹𝜑) ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2319, 22bitri 263 . . . 4 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2418, 23sylibr 223 . . 3 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
2524exlimiv 1845 . 2 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
267, 25sylbi 206 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897   cuni 4372  cmpt 4643  ran crn 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-dm 5048  df-rn 5049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator