Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexrot4 | Structured version Visualization version GIF version |
Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.) |
Ref | Expression |
---|---|
rexrot4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom13 3081 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | rexbii 3023 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑) |
3 | rexcom13 3081 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐷 ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 |
This theorem is referenced by: lsmspsn 18905 |
Copyright terms: Public domain | W3C validator |