Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4026
 Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3880 . . 3 (𝑥𝐴𝐴 ≠ ∅)
21a1d 25 . 2 (𝑥𝐴 → (𝜑𝐴 ≠ ∅))
32rexlimiv 3009 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ∅c0 3874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-nul 3875 This theorem is referenced by:  reusv2lem3  4797  eusvobj2  6542  isdrs2  16762  ismnd  17120  slwn0  17853  lbsexg  18985  iuncon  21041  grpon0  26740  filbcmb  32705  isbnd2  32752  rencldnfi  36403  iunconlem2  38193  stoweidlem14  38907  hoidmvval0  39477  2reu4  39839
 Copyright terms: Public domain W3C validator