Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version |
Description: Restricted quantifier version of exlimi 2073. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 2906 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 3004 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 219 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1699 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ex 1696 df-nf 1701 df-ral 2901 df-rex 2902 |
This theorem is referenced by: triun 4694 reusv1 4792 reusv1OLD 4793 reusv3 4802 iunopeqop 4906 tfinds 6951 fun11iun 7019 iunfo 9240 iundom2g 9241 fsumcom2 14347 fsumcom2OLD 14348 fprodcom2 14553 fprodcom2OLD 14554 dfon2lem7 30938 finminlem 31482 hoidmvlelem1 39485 reuan 39829 2zrngmmgm 41736 |
Copyright terms: Public domain | W3C validator |