Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdva0 | Structured version Visualization version GIF version |
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
Ref | Expression |
---|---|
reximdva0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
reximdva0 | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3890 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | reximdva0.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 449 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | ancld 574 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 4 | eximdv 1833 | . . . 4 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
6 | 5 | imp 444 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
7 | 1, 6 | sylan2b 491 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
8 | df-rex 2902 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | 7, 8 | sylibr 223 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 ∅c0 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-rex 2902 df-v 3175 df-dif 3543 df-nul 3875 |
This theorem is referenced by: n0snor2el 4304 hashgt12el 13070 refun0 21128 cstucnd 21898 supxrnemnf 28924 kerunit 29154 elpaddn0 34104 |
Copyright terms: Public domain | W3C validator |