MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Structured version   Visualization version   GIF version

Theorem reximdva0 3891
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 3890 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 reximdva0.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝜓)
32ex 449 . . . . . 6 (𝜑 → (𝑥𝐴𝜓))
43ancld 574 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
54eximdv 1833 . . . 4 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
65imp 444 . . 3 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
71, 6sylan2b 491 . 2 ((𝜑𝐴 ≠ ∅) → ∃𝑥(𝑥𝐴𝜓))
8 df-rex 2902 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
97, 8sylibr 223 1 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1695  wcel 1977  wne 2780  wrex 2897  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rex 2902  df-v 3175  df-dif 3543  df-nul 3875
This theorem is referenced by:  n0snor2el  4304  hashgt12el  13070  refun0  21128  cstucnd  21898  supxrnemnf  28924  kerunit  29154  elpaddn0  34104
  Copyright terms: Public domain W3C validator