MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reumodprminv Structured version   Visualization version   GIF version

Theorem reumodprminv 15347
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Distinct variable groups:   𝑖,𝑁   𝑃,𝑖

Proof of Theorem reumodprminv
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
2 elfzoelz 12339 . . . . 5 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
32adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
4 prmnn 15226 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
6 prmz 15227 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
7 fzoval 12340 . . . . . . . . 9 (𝑃 ∈ ℤ → (1..^𝑃) = (1...(𝑃 − 1)))
86, 7syl 17 . . . . . . . 8 (𝑃 ∈ ℙ → (1..^𝑃) = (1...(𝑃 − 1)))
98eleq2d 2673 . . . . . . 7 (𝑃 ∈ ℙ → (𝑁 ∈ (1..^𝑃) ↔ 𝑁 ∈ (1...(𝑃 − 1))))
109biimpa 500 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ (1...(𝑃 − 1)))
115, 10jca 553 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))))
12 fzm1ndvds 14882 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
1311, 12syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ¬ 𝑃𝑁)
14 eqid 2610 . . . . . . 7 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
1514modprminv 15342 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
1615simpld 474 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1715simprd 478 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
18 1eluzge0 11608 . . . . . . . . . . . 12 1 ∈ (ℤ‘0)
19 fzss1 12251 . . . . . . . . . . . 12 (1 ∈ (ℤ‘0) → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
2018, 19mp1i 13 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
2120sseld 3567 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
22213ad2ant1 1075 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
2322imdistani 722 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))))
2414modprminveq 15343 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1) ↔ 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
2524biimpa 500 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃))
2625eqcomd 2616 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)
2726expr 641 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2823, 27syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2928ralrimiva 2949 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
3017, 29jca 553 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3116, 30jca 553 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
321, 3, 13, 31syl3anc 1318 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
33 oveq2 6557 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑁 · 𝑖) = (𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3433oveq1d 6564 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3534eqeq1d 2612 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
36 eqeq1 2614 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑖 = 𝑠 ↔ ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
3736imbi2d 329 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3837ralbidv 2969 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3935, 38anbi12d 743 . . . 4 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)) ↔ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
4039rspcev 3282 . . 3 ((((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
4132, 40syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
42 oveq2 6557 . . . . 5 (𝑖 = 𝑠 → (𝑁 · 𝑖) = (𝑁 · 𝑠))
4342oveq1d 6564 . . . 4 (𝑖 = 𝑠 → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · 𝑠) mod 𝑃))
4443eqeq1d 2612 . . 3 (𝑖 = 𝑠 → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · 𝑠) mod 𝑃) = 1))
4544reu8 3369 . 2 (∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
4641, 45sylibr 223 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820  cmin 10145  cn 10897  2c2 10947  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334   mod cmo 12530  cexp 12722  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309
This theorem is referenced by:  modprm0  15348
  Copyright terms: Public domain W3C validator