MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccats1lem Structured version   Visualization version   GIF version

Theorem reuccats1lem 13331
Description: Lemma for reuccats1 13332. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Proof shortened by AV, 15-Jan-2020.)
Assertion
Ref Expression
reuccats1lem (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccats1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑈 → (#‘𝑥) = (#‘𝑈))
32eqeq1d 2612 . . . . . . . . 9 (𝑥 = 𝑈 → ((#‘𝑥) = ((#‘𝑊) + 1) ↔ (#‘𝑈) = ((#‘𝑊) + 1)))
41, 3anbi12d 743 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
54rspcv 3278 . . . . . . 7 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
65adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
7 simpl 472 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
87adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
9 simpl 472 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
109adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
11 simprr 792 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (#‘𝑈) = ((#‘𝑊) + 1))
12 ccats1swrdeqrex 13330 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
138, 10, 11, 12syl3anc 1318 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
14 s1eq 13233 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1514oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1615eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
17 eqeq2 2621 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1816, 17imbi12d 333 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1918rspcv 3278 . . . . . . . . . . . . . 14 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
20 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
2120biimpac 502 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋)
22 s1eq 13233 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑆 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2322eqcoms 2618 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 = 𝑢 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2423oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 = 𝑢 → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2524eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2625biimpd 218 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726imim2i 16 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2827com13 86 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2928adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3021, 29mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
3130ex 449 . . . . . . . . . . . . . . 15 (𝑈𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3231com23 84 . . . . . . . . . . . . . 14 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3319, 32sylan9r 688 . . . . . . . . . . . . 13 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433com23 84 . . . . . . . . . . . 12 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534rexlimdva 3013 . . . . . . . . . . 11 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3635adantl 481 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3736adantr 480 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3813, 37syld 46 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3938com23 84 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4039ex 449 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
416, 40syld 46 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4241com23 84 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4342impd 446 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
44433adant3 1074 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4544imp 444 1 (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cop 4131  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  #chash 12979  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158
This theorem is referenced by:  reuccats1  13332
  Copyright terms: Public domain W3C validator