Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuccatpfxs1 Structured version   Visualization version   GIF version

Theorem reuccatpfxs1 40297
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. Could replace reuccats1 13332. (Contributed by AV, 10-May-2020.)
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑤,𝑥   𝑣,𝑊,𝑤,𝑥   𝑣,𝑋,𝑤,𝑥

Proof of Theorem reuccatpfxs1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 s1eq 13233 . . . . 5 (𝑣 = 𝑢 → ⟨“𝑣”⟩ = ⟨“𝑢”⟩)
21oveq2d 6565 . . . 4 (𝑣 = 𝑢 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
32eleq1d 2672 . . 3 (𝑣 = 𝑢 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
43reu8 3369 . 2 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
5 simprl 790 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
6 simpl 472 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
76ad2antrr 758 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
87anim1i 590 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 ∈ Word 𝑉𝑤𝑋))
9 simplrr 797 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
10 simp-4r 803 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))
11 reuccatpfxs1lem 40296 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑤𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑤 prefix (#‘𝑊)) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
128, 9, 10, 11syl3anc 1318 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 = (𝑤 prefix (#‘𝑊)) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
136anim1i 590 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉𝑣𝑉))
1413adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ∈ Word 𝑉𝑣𝑉))
1514ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ∈ Word 𝑉𝑣𝑉))
16 lswccats1 13263 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑣𝑉) → ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)) = 𝑣)
1715, 16syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)) = 𝑣)
1817eqcomd 2616 . . . . . . . . . . . 12 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑣 = ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)))
1918s1eqd 13234 . . . . . . . . . . 11 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → ⟨“𝑣”⟩ = ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)
2019oveq2d 6565 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩))
21 id 22 . . . . . . . . . . . 12 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑤 = (𝑊 ++ ⟨“𝑣”⟩))
22 fveq2 6103 . . . . . . . . . . . . . 14 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑊 ++ ⟨“𝑣”⟩)))
2322s1eqd 13234 . . . . . . . . . . . . 13 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ⟨“( lastS ‘𝑤)”⟩ = ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)
2423oveq2d 6565 . . . . . . . . . . . 12 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩))
2521, 24eqeq12d 2625 . . . . . . . . . . 11 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) ↔ (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)))
2625adantl 481 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩) ↔ (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“( lastS ‘(𝑊 ++ ⟨“𝑣”⟩))”⟩)))
2720, 26mpbird 246 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩))
28 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥 ∈ Word 𝑉𝑤 ∈ Word 𝑉))
29 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → (#‘𝑥) = (#‘𝑤))
3029eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((#‘𝑥) = ((#‘𝑊) + 1) ↔ (#‘𝑤) = ((#‘𝑊) + 1)))
3128, 30anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) ↔ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3231rspcva 3280 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
33 3anass 1035 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3433simplbi2com 655 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3532, 34syl 17 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3635ex 449 . . . . . . . . . . . . . . 15 (𝑤𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))))
3736com13 86 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))))
3837imp 444 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
3938ad2antrr 758 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑤𝑋 → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1))))
4039imp 444 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
4140adantr 480 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)))
42 ccats1pfxeqbi 40294 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = ((#‘𝑊) + 1)) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩)))
4341, 42syl 17 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“( lastS ‘𝑤)”⟩)))
4427, 43mpbird 246 . . . . . . . 8 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) ∧ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑤 prefix (#‘𝑊)))
4544ex 449 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑤 prefix (#‘𝑊))))
4612, 45impbid 201 . . . . . 6 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑤𝑋) → (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
4746ralrimiva 2949 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑤𝑋 (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩)))
48 reu6i 3364 . . . . 5 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑤𝑋 (𝑊 = (𝑤 prefix (#‘𝑊)) ↔ 𝑤 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊)))
495, 47, 48syl2anc 691 . . . 4 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊)))
5049ex 449 . . 3 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
5150rexlimdva 3013 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
524, 51syl5bi 231 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑤𝑋 𝑊 = (𝑤 prefix (#‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149   prefix cpfx 40244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-pfx 40245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator