MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restutopopn Structured version   Visualization version   GIF version

Theorem restutopopn 21852
Description: The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
restutopopn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem restutopopn
Dummy variables 𝑎 𝑏 𝑡 𝑢 𝑤 𝑥 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elutop 21847 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑡𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴)))
21simprbda 651 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → 𝐴𝑋)
3 restutop 21851 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
42, 3syldan 486 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
5 trust 21843 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
62, 5syldan 486 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
7 elutop 21847 . . . . . . . . . 10 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑢 ∈ (𝑈t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏)))
86, 7syl 17 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑢 ∈ (𝑈t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏)))
98simprbda 651 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝑏𝐴)
102adantr 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝐴𝑋)
119, 10sstrd 3578 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝑏𝑋)
12 simp-9l 812 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑈 ∈ (UnifOn‘𝑋))
13 simplr 788 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑡𝑈)
14 simp-4r 803 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑤𝑈)
15 ustincl 21821 . . . . . . . . . . . . 13 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑡𝑈𝑤𝑈) → (𝑡𝑤) ∈ 𝑈)
1612, 13, 14, 15syl3anc 1318 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑡𝑤) ∈ 𝑈)
17 inimass 5468 . . . . . . . . . . . . 13 ((𝑡𝑤) “ {𝑥}) ⊆ ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥}))
18 ssrin 3800 . . . . . . . . . . . . . . . 16 ((𝑡 “ {𝑥}) ⊆ 𝐴 → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝐴 ∩ (𝑤 “ {𝑥})))
1918adantl 481 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝐴 ∩ (𝑤 “ {𝑥})))
20 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑢 = (𝑤 ∩ (𝐴 × 𝐴)))
2120imaeq1d 5384 . . . . . . . . . . . . . . . 16 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) = ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}))
229ad5antr 766 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑏𝐴)
23 simp-5r 805 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑥𝑏)
2422, 23sseldd 3569 . . . . . . . . . . . . . . . . . 18 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑥𝐴)
2524ad2antrr 758 . . . . . . . . . . . . . . . . 17 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑥𝐴)
26 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
27 inimasn 5469 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥})))
2826, 27ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥}))
29 xpimasn 5498 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 → ((𝐴 × 𝐴) “ {𝑥}) = 𝐴)
3029ineq2d 3776 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥})) = ((𝑤 “ {𝑥}) ∩ 𝐴))
3128, 30syl5eq 2656 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ 𝐴))
32 incom 3767 . . . . . . . . . . . . . . . . . 18 ((𝑤 “ {𝑥}) ∩ 𝐴) = (𝐴 ∩ (𝑤 “ {𝑥}))
3331, 32syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥})))
3425, 33syl 17 . . . . . . . . . . . . . . . 16 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥})))
3521, 34eqtrd 2644 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥})))
3619, 35sseqtr4d 3605 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝑢 “ {𝑥}))
37 simp-5r 805 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) ⊆ 𝑏)
3836, 37sstrd 3578 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ 𝑏)
3917, 38syl5ss 3579 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡𝑤) “ {𝑥}) ⊆ 𝑏)
40 imaeq1 5380 . . . . . . . . . . . . . 14 (𝑣 = (𝑡𝑤) → (𝑣 “ {𝑥}) = ((𝑡𝑤) “ {𝑥}))
4140sseq1d 3595 . . . . . . . . . . . . 13 (𝑣 = (𝑡𝑤) → ((𝑣 “ {𝑥}) ⊆ 𝑏 ↔ ((𝑡𝑤) “ {𝑥}) ⊆ 𝑏))
4241rspcev 3282 . . . . . . . . . . . 12 (((𝑡𝑤) ∈ 𝑈 ∧ ((𝑡𝑤) “ {𝑥}) ⊆ 𝑏) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
4316, 39, 42syl2anc 691 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
44 simp-4l 802 . . . . . . . . . . . . 13 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)))
4544ad2antrr 758 . . . . . . . . . . . 12 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)))
461simplbda 652 . . . . . . . . . . . . 13 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ∀𝑥𝐴𝑡𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴)
4746r19.21bi 2916 . . . . . . . . . . . 12 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑥𝐴) → ∃𝑡𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴)
4845, 24, 47syl2anc 691 . . . . . . . . . . 11 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → ∃𝑡𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴)
4943, 48r19.29a 3060 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
50 simplr 788 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → 𝑢 ∈ (𝑈t (𝐴 × 𝐴)))
51 sqxpexg 6861 . . . . . . . . . . . . 13 (𝐴 ∈ (unifTop‘𝑈) → (𝐴 × 𝐴) ∈ V)
52 elrest 15911 . . . . . . . . . . . . 13 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑢 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑤𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))))
5351, 52sylan2 490 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑢 ∈ (𝑈t (𝐴 × 𝐴)) ↔ ∃𝑤𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))))
5453biimpa 500 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) → ∃𝑤𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴)))
5544, 50, 54syl2anc 691 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → ∃𝑤𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴)))
5649, 55r19.29a 3060 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) ∧ 𝑢 ∈ (𝑈t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
578simplbda 652 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑥𝑏𝑢 ∈ (𝑈t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏)
5857r19.21bi 2916 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) → ∃𝑢 ∈ (𝑈t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏)
5956, 58r19.29a 3060 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑥𝑏) → ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
6059ralrimiva 2949 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑥𝑏𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)
61 elutop 21847 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (𝑏 ∈ (unifTop‘𝑈) ↔ (𝑏𝑋 ∧ ∀𝑥𝑏𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)))
6261ad2antrr 758 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → (𝑏 ∈ (unifTop‘𝑈) ↔ (𝑏𝑋 ∧ ∀𝑥𝑏𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏)))
6311, 60, 62mpbir2and 959 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝑏 ∈ (unifTop‘𝑈))
64 df-ss 3554 . . . . . . . 8 (𝑏𝐴 ↔ (𝑏𝐴) = 𝑏)
659, 64sylib 207 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → (𝑏𝐴) = 𝑏)
6665eqcomd 2616 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝑏 = (𝑏𝐴))
67 ineq1 3769 . . . . . . . 8 (𝑎 = 𝑏 → (𝑎𝐴) = (𝑏𝐴))
6867eqeq2d 2620 . . . . . . 7 (𝑎 = 𝑏 → (𝑏 = (𝑎𝐴) ↔ 𝑏 = (𝑏𝐴)))
6968rspcev 3282 . . . . . 6 ((𝑏 ∈ (unifTop‘𝑈) ∧ 𝑏 = (𝑏𝐴)) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
7063, 66, 69syl2anc 691 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
71 fvex 6113 . . . . . . 7 (unifTop‘𝑈) ∈ V
72 elrest 15911 . . . . . . 7 (((unifTop‘𝑈) ∈ V ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
7371, 72mpan 702 . . . . . 6 (𝐴 ∈ (unifTop‘𝑈) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
7473ad2antlr 759 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
7570, 74mpbird 246 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))) → 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴))
7675ex 449 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) → 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)))
7776ssrdv 3574 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (unifTop‘(𝑈t (𝐴 × 𝐴))) ⊆ ((unifTop‘𝑈) ↾t 𝐴))
784, 77eqssd 3585 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  {csn 4125   × cxp 5036  cima 5041  cfv 5804  (class class class)co 6549  t crest 15904  UnifOncust 21813  unifTopcutop 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-ust 21814  df-utop 21845
This theorem is referenced by:  ressusp  21879
  Copyright terms: Public domain W3C validator