Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcldr Structured version   Visualization version   GIF version

Theorem restcldr 20788
 Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
restcldr ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))

Proof of Theorem restcldr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 20640 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2610 . . . . 5 𝐽 = 𝐽
32cldss 20643 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
42restcld 20786 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
51, 3, 4syl2anc 691 . . 3 (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
6 incld 20657 . . . . . 6 ((𝑣 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑣𝐴) ∈ (Clsd‘𝐽))
76ancoms 468 . . . . 5 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝑣𝐴) ∈ (Clsd‘𝐽))
8 eleq1 2676 . . . . 5 (𝐵 = (𝑣𝐴) → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝑣𝐴) ∈ (Clsd‘𝐽)))
97, 8syl5ibrcom 236 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝑣 ∈ (Clsd‘𝐽)) → (𝐵 = (𝑣𝐴) → 𝐵 ∈ (Clsd‘𝐽)))
109rexlimdva 3013 . . 3 (𝐴 ∈ (Clsd‘𝐽) → (∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴) → 𝐵 ∈ (Clsd‘𝐽)))
115, 10sylbid 229 . 2 (𝐴 ∈ (Clsd‘𝐽) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) → 𝐵 ∈ (Clsd‘𝐽)))
1211imp 444 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  ∪ cuni 4372  ‘cfv 5804  (class class class)co 6549   ↾t crest 15904  Topctop 20517  Clsdccld 20630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633 This theorem is referenced by:  paste  20908  qtoprest  21330  zcld2  22426  sszcld  22428  logdmopn  24195  dvasin  32666  dvacos  32667  dvreasin  32668  dvreacos  32669
 Copyright terms: Public domain W3C validator