Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressust Structured version   Visualization version   GIF version

Theorem ressust 21878
 Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.)
Hypotheses
Ref Expression
ressust.x 𝑋 = (Base‘𝑊)
ressust.t 𝑇 = (UnifSt‘(𝑊s 𝐴))
Assertion
Ref Expression
ressust ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))

Proof of Theorem ressust
StepHypRef Expression
1 ressust.t . . 3 𝑇 = (UnifSt‘(𝑊s 𝐴))
2 ressust.x . . . . . . 7 𝑋 = (Base‘𝑊)
3 fvex 6113 . . . . . . 7 (Base‘𝑊) ∈ V
42, 3eqeltri 2684 . . . . . 6 𝑋 ∈ V
54ssex 4730 . . . . 5 (𝐴𝑋𝐴 ∈ V)
65adantl 481 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 ressuss 21877 . . . 4 (𝐴 ∈ V → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
86, 7syl 17 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
91, 8syl5eq 2656 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
10 eqid 2610 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
11 eqid 2610 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
122, 10, 11isusp 21875 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝑊) = (unifTop‘(UnifSt‘𝑊))))
1312simplbi 475 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘𝑋))
14 trust 21843 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
1513, 14sylan 487 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
169, 15eqeltrd 2688 1 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   × cxp 5036  ‘cfv 5804  (class class class)co 6549  Basecbs 15695   ↾s cress 15696   ↾t crest 15904  TopOpenctopn 15905  UnifOncust 21813  unifTopcutop 21844  UnifStcuss 21867  UnifSpcusp 21868 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-unif 15792  df-rest 15906  df-ust 21814  df-uss 21870  df-usp 21871 This theorem is referenced by:  ucnextcn  21918
 Copyright terms: Public domain W3C validator