MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 16565
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resssetc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCat‘𝑉)
2 resssetc.1 . . . . . . . 8 (𝜑𝑈𝑊)
3 resssetc.2 . . . . . . . 8 (𝜑𝑉𝑈)
42, 3ssexd 4733 . . . . . . 7 (𝜑𝑉 ∈ V)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 ∈ V)
6 eqid 2610 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
7 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
8 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
91, 5, 6, 7, 8setchom 16553 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑦𝑚 𝑥))
10 resssetc.c . . . . . 6 𝐶 = (SetCat‘𝑈)
112adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑈𝑊)
12 eqid 2610 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
133adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉𝑈)
1413, 7sseldd 3569 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑈)
1513, 8sseldd 3569 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑈)
1610, 11, 12, 14, 15setchom 16553 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑦𝑚 𝑥))
17 eqid 2610 . . . . . . . 8 (𝐶s 𝑉) = (𝐶s 𝑉)
1817, 12resshom 15901 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
194, 18syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
2019oveqdr 6573 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
219, 16, 203eqtr2rd 2651 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
2221ralrimivva 2954 . . 3 (𝜑 → ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
23 eqid 2610 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
2410, 2setcbas 16551 . . . . . 6 (𝜑𝑈 = (Base‘𝐶))
253, 24sseqtrd 3604 . . . . 5 (𝜑𝑉 ⊆ (Base‘𝐶))
26 eqid 2610 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2717, 26ressbas2 15758 . . . . 5 (𝑉 ⊆ (Base‘𝐶) → 𝑉 = (Base‘(𝐶s 𝑉)))
2825, 27syl 17 . . . 4 (𝜑𝑉 = (Base‘(𝐶s 𝑉)))
291, 4setcbas 16551 . . . 4 (𝜑𝑉 = (Base‘𝐷))
3023, 6, 28, 29homfeq 16177 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
3122, 30mpbird 246 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
324ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
33 eqid 2610 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
34 simplr1 1096 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑉)
35 simplr2 1097 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑉)
36 simplr3 1098 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑉)
37 simprl 790 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
381, 32, 6, 34, 35elsetchom 16554 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ 𝑓:𝑥𝑦))
3937, 38mpbid 221 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓:𝑥𝑦)
40 simprr 792 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
411, 32, 6, 35, 36elsetchom 16554 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↔ 𝑔:𝑦𝑧))
4240, 41mpbid 221 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔:𝑦𝑧)
431, 32, 33, 34, 35, 36, 39, 42setcco 16556 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔𝑓))
442ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
45 eqid 2610 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
463ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉𝑈)
4746, 34sseldd 3569 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑈)
4846, 35sseldd 3569 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑈)
4946, 36sseldd 3569 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑈)
5010, 44, 45, 47, 48, 49, 39, 42setcco 16556 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
5117, 45ressco 15902 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5352ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5453oveqd 6566 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
5554oveqd 6566 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2650 . . . . . 6 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5756ralrimivva 2954 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5857ralrimivvva 2955 . . . 4 (𝜑 → ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
59 eqid 2610 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
6031eqcomd 2616 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 16189 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
6258, 61mpbird 246 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
6362eqcomd 2616 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
6431, 63jca 553 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  cop 4131  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Basecbs 15695  s cress 15696  Hom chom 15779  compcco 15780  Homf chomf 16150  compfccomf 16151  SetCatcsetc 16548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-hom 15793  df-cco 15794  df-homf 16154  df-comf 16155  df-setc 16549
This theorem is referenced by:  funcsetcres2  16566
  Copyright terms: Public domain W3C validator