MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Visualization version   GIF version

Theorem ressress 15765
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressress
StepHypRef Expression
1 simplr 788 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ 𝐴)
2 simpr1 1060 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝑊 ∈ V)
3 simpr2 1061 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4 eqid 2610 . . . . . . . . . 10 (𝑊s 𝐴) = (𝑊s 𝐴)
5 eqid 2610 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
64, 5ressval2 15756 . . . . . . . . 9 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
71, 2, 3, 6syl3anc 1318 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
8 inass 3785 . . . . . . . . . . 11 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
9 in12 3786 . . . . . . . . . . 11 (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
108, 9eqtri 2632 . . . . . . . . . 10 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐵 ∩ (𝐴 ∩ (Base‘𝑊)))
114, 5ressbas 15757 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
123, 11syl 17 . . . . . . . . . . 11 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
1312ineq2d 3776 . . . . . . . . . 10 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (𝐴 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘(𝑊s 𝐴))))
1410, 13syl5req 2657 . . . . . . . . 9 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘(𝑊s 𝐴))) = ((𝐴𝐵) ∩ (Base‘𝑊)))
1514opeq2d 4347 . . . . . . . 8 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
167, 15oveq12d 6567 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
17 fvex 6113 . . . . . . . . 9 (Base‘𝑊) ∈ V
1817inex2 4728 . . . . . . . 8 ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V
19 setsabs 15730 . . . . . . . 8 ((𝑊 ∈ V ∧ ((𝐴𝐵) ∩ (Base‘𝑊)) ∈ V) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
202, 18, 19sylancl 693 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
2116, 20eqtrd 2644 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
22 simpll 786 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
23 ovex 6577 . . . . . . . 8 (𝑊s 𝐴) ∈ V
2423a1i 11 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) ∈ V)
25 simpr3 1062 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
26 eqid 2610 . . . . . . . 8 ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) ↾s 𝐵)
27 eqid 2610 . . . . . . . 8 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
2826, 27ressval2 15756 . . . . . . 7 ((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
2922, 24, 25, 28syl3anc 1318 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = ((𝑊s 𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘(𝑊s 𝐴)))⟩))
30 inss1 3795 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
31 sstr 3576 . . . . . . . . 9 (((Base‘𝑊) ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐴) → (Base‘𝑊) ⊆ 𝐴)
3230, 31mpan2 703 . . . . . . . 8 ((Base‘𝑊) ⊆ (𝐴𝐵) → (Base‘𝑊) ⊆ 𝐴)
331, 32nsyl 134 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ¬ (Base‘𝑊) ⊆ (𝐴𝐵))
34 inex1g 4729 . . . . . . . 8 (𝐴𝑋 → (𝐴𝐵) ∈ V)
353, 34syl 17 . . . . . . 7 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴𝐵) ∈ V)
36 eqid 2610 . . . . . . . 8 (𝑊s (𝐴𝐵)) = (𝑊s (𝐴𝐵))
3736, 5ressval2 15756 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ (𝐴𝐵) ∧ 𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3833, 2, 35, 37syl3anc 1318 . . . . . 6 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
3921, 29, 383eqtr4d 2654 . . . . 5 (((¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ ¬ (Base‘𝑊) ⊆ 𝐴) ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
4039exp31 628 . . . 4 (¬ (Base‘(𝑊s 𝐴)) ⊆ 𝐵 → (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))))
4126, 27ressid2 15755 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊s 𝐴) ∈ V ∧ 𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
4223, 41mp3an2 1404 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
43423ad2antr3 1221 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐴))
44 in32 3787 . . . . . . . . 9 ((𝐴𝐵) ∩ (Base‘𝑊)) = ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵)
45 simpr2 1061 . . . . . . . . . . . 12 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
4645, 11syl 17 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝐴)))
47 simpl 472 . . . . . . . . . . 11 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘(𝑊s 𝐴)) ⊆ 𝐵)
4846, 47eqsstrd 3602 . . . . . . . . . 10 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵)
49 df-ss 3554 . . . . . . . . . 10 ((𝐴 ∩ (Base‘𝑊)) ⊆ 𝐵 ↔ ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5048, 49sylib 207 . . . . . . . . 9 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝐴 ∩ (Base‘𝑊)) ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)))
5144, 50syl5req 2657 . . . . . . . 8 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
5251oveq2d 6565 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
535ressinbas 15763 . . . . . . . 8 (𝐴𝑋 → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
5445, 53syl 17 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴 ∩ (Base‘𝑊))))
555ressinbas 15763 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5645, 34, 553syl 18 . . . . . . 7 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
5752, 54, 563eqtr4d 2654 . . . . . 6 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
5843, 57eqtrd 2644 . . . . 5 (((Base‘(𝑊s 𝐴)) ⊆ 𝐵 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5958ex 449 . . . 4 ((Base‘(𝑊s 𝐴)) ⊆ 𝐵 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
604, 5ressid2 15755 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑋) → (𝑊s 𝐴) = 𝑊)
61603adant3r3 1268 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐴) = 𝑊)
6261oveq1d 6564 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
63 inss2 3796 . . . . . . . . . . 11 (𝐵 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
64 simpl 472 . . . . . . . . . . 11 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (Base‘𝑊) ⊆ 𝐴)
6563, 64syl5ss 3579 . . . . . . . . . 10 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴)
66 sseqin2 3779 . . . . . . . . . 10 ((𝐵 ∩ (Base‘𝑊)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
6765, 66sylib 207 . . . . . . . . 9 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) = (𝐵 ∩ (Base‘𝑊)))
688, 67syl5req 2657 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝐵 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
6968oveq2d 6565 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐵 ∩ (Base‘𝑊))) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
70 simpr3 1062 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
715ressinbas 15763 . . . . . . . 8 (𝐵𝑌 → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
7270, 71syl 17 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐵 ∩ (Base‘𝑊))))
73 simpr2 1061 . . . . . . . 8 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
7473, 34, 553syl 18 . . . . . . 7 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s (𝐴𝐵)) = (𝑊s ((𝐴𝐵) ∩ (Base‘𝑊))))
7569, 72, 743eqtr4d 2654 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → (𝑊s 𝐵) = (𝑊s (𝐴𝐵)))
7662, 75eqtrd 2644 . . . . 5 (((Base‘𝑊) ⊆ 𝐴 ∧ (𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌)) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
7776ex 449 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
7840, 59, 77pm2.61ii 176 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
79783expib 1260 . 2 (𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
80 ress0 15761 . . . 4 (∅ ↾s 𝐵) = ∅
81 reldmress 15753 . . . . . 6 Rel dom ↾s
8281ovprc1 6582 . . . . 5 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
8382oveq1d 6564 . . . 4 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
8481ovprc1 6582 . . . 4 𝑊 ∈ V → (𝑊s (𝐴𝐵)) = ∅)
8580, 83, 843eqtr4a 2670 . . 3 𝑊 ∈ V → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
8685a1d 25 . 2 𝑊 ∈ V → ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵))))
8779, 86pm2.61i 175 1 ((𝐴𝑋𝐵𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  c0 3874  cop 4131  cfv 5804  (class class class)co 6549  ndxcnx 15692   sSet csts 15693  Basecbs 15695  s cress 15696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702
This theorem is referenced by:  ressabs  15766  xrge00  29017  xrge0slmod  29175  esumpfinvallem  29463  lmhmlnmsplit  36675
  Copyright terms: Public domain W3C validator