Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmptf Structured version   Visualization version   GIF version

Theorem resmptf 28838
 Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a 𝑥𝐴
resmptf.b 𝑥𝐵
Assertion
Ref Expression
resmptf (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))

Proof of Theorem resmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resmpt 5369 . 2 (𝐵𝐴 → ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵) = (𝑦𝐵𝑦 / 𝑥𝐶))
2 resmptf.a . . . 4 𝑥𝐴
3 nfcv 2751 . . . 4 𝑦𝐴
4 nfcv 2751 . . . 4 𝑦𝐶
5 nfcsb1v 3515 . . . 4 𝑥𝑦 / 𝑥𝐶
6 csbeq1a 3508 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
72, 3, 4, 5, 6cbvmptf 4676 . . 3 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
87reseq1i 5313 . 2 ((𝑥𝐴𝐶) ↾ 𝐵) = ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵)
9 resmptf.b . . 3 𝑥𝐵
10 nfcv 2751 . . 3 𝑦𝐵
119, 10, 4, 5, 6cbvmptf 4676 . 2 (𝑥𝐵𝐶) = (𝑦𝐵𝑦 / 𝑥𝐶)
121, 8, 113eqtr4g 2669 1 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  Ⅎwnfc 2738  ⦋csb 3499   ⊆ wss 3540   ↦ cmpt 4643   ↾ cres 5040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-res 5050 This theorem is referenced by:  esumval  29435  esumel  29436  esumsplit  29442  esumss  29461
 Copyright terms: Public domain W3C validator