MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm2b Structured version   Visualization version   GIF version

Theorem resghm2b 17501
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resghm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resghm2b ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))

Proof of Theorem resghm2b
StepHypRef Expression
1 ghmgrp1 17485 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
21a1i 11 . 2 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp))
3 ghmgrp1 17485 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp)
43a1i 11 . 2 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑈) → 𝑆 ∈ Grp))
5 subgsubm 17439 . . . . . 6 (𝑋 ∈ (SubGrp‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇))
6 resghm2.u . . . . . . 7 𝑈 = (𝑇s 𝑋)
76resmhm2b 17184 . . . . . 6 ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
85, 7sylan 487 . . . . 5 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
98adantl 481 . . . 4 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
10 subgrcl 17422 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑇) → 𝑇 ∈ Grp)
1110adantr 480 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → 𝑇 ∈ Grp)
12 ghmmhmb 17494 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
1311, 12sylan2 490 . . . . 5 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
1413eleq2d 2673 . . . 4 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑇)))
156subggrp 17420 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑇) → 𝑈 ∈ Grp)
1615adantr 480 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → 𝑈 ∈ Grp)
17 ghmmhmb 17494 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈))
1816, 17sylan2 490 . . . . 5 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈))
1918eleq2d 2673 . . . 4 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑈) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
209, 14, 193bitr4d 299 . . 3 ((𝑆 ∈ Grp ∧ (𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋)) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
2120expcom 450 . 2 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Grp → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))))
222, 4, 21pm5.21ndd 368 1 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  ran crn 5039  cfv 5804  (class class class)co 6549  s cress 15696   MndHom cmhm 17156  SubMndcsubmnd 17157  Grpcgrp 17245  SubGrpcsubg 17411   GrpHom cghm 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-ghm 17481
This theorem is referenced by:  ghmghmrn  17502  cayley  17657  pj1ghm2  17940  dpjghm2  18286  reslmhm2b  18875  m2cpmghm  20368
  Copyright terms: Public domain W3C validator