Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq12i | Structured version Visualization version GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
reseqi.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | reseq1i 5313 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | reseq2i 5314 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
5 | 2, 4 | eqtri 2632 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ↾ cres 5040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-in 3547 df-opab 4644 df-xp 5044 df-res 5050 |
This theorem is referenced by: cnvresid 5882 wfrlem5 7306 dfoi 8299 lubfval 16801 glbfval 16814 oduglb 16962 odulub 16964 dvlog 24197 dvlog2 24199 sitgclg 29731 frrlem5 31028 fourierdlem57 39056 fourierdlem74 39073 fourierdlem75 39074 issubgr 40495 |
Copyright terms: Public domain | W3C validator |