MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdisj Structured version   Visualization version   GIF version

Theorem resdisj 5482
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)

Proof of Theorem resdisj
StepHypRef Expression
1 reseq2 5312 . 2 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = (𝐶 ↾ ∅))
2 resres 5329 . 2 ((𝐶𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴𝐵))
3 res0 5321 . . 3 (𝐶 ↾ ∅) = ∅
43eqcomi 2619 . 2 ∅ = (𝐶 ↾ ∅)
51, 2, 43eqtr4g 2669 1 ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  cin 3539  c0 3874  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-rel 5045  df-res 5050
This theorem is referenced by:  fvsnun1  6353
  Copyright terms: Public domain W3C validator