Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reltpos | Structured version Visualization version GIF version |
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
reltpos | ⊢ Rel tpos 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 7243 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | relxp 5150 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
3 | relss 5129 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel tpos 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3538 ⊆ wss 3540 ∅c0 3874 {csn 4125 × cxp 5036 ◡ccnv 5037 dom cdm 5038 ran crn 5039 Rel wrel 5043 tpos ctpos 7238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-mpt 4645 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-tpos 7239 |
This theorem is referenced by: brtpos2 7245 relbrtpos 7250 dftpos2 7256 dftpos3 7257 tpostpos 7259 |
Copyright terms: Public domain | W3C validator |