MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltpos Structured version   Visualization version   GIF version

Theorem reltpos 7244
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos Rel tpos 𝐹

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 7243 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 relxp 5150 . 2 Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹)
3 relss 5129 . 2 (tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹))
41, 2, 3mp2 9 1 Rel tpos 𝐹
Colors of variables: wff setvar class
Syntax hints:  cun 3538  wss 3540  c0 3874  {csn 4125   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  Rel wrel 5043  tpos ctpos 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-tpos 7239
This theorem is referenced by:  brtpos2  7245  relbrtpos  7250  dftpos2  7256  dftpos3  7257  tpostpos  7259
  Copyright terms: Public domain W3C validator