Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsn2 | Structured version Visualization version GIF version |
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) |
Ref | Expression |
---|---|
relsn2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn2 | ⊢ (Rel {𝐴} ↔ dom {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | relsn 5146 | . 2 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
3 | dmsnn0 5518 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (Rel {𝐴} ↔ dom {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∈ wcel 1977 ≠ wne 2780 Vcvv 3173 ∅c0 3874 {csn 4125 × cxp 5036 dom cdm 5038 Rel wrel 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-dm 5048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |