Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrn0 Structured version   Visualization version   GIF version

Theorem relrn0 5304
 Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
relrn0 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))

Proof of Theorem relrn0
StepHypRef Expression
1 reldm0 5264 . 2 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
2 dm0rn0 5263 . 2 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
31, 2syl6bb 275 1 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  ∅c0 3874  dom cdm 5038  ran crn 5039  Rel wrel 5043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049 This theorem is referenced by:  cnvsn0  5521  coeq0  5561  foconst  6039  fconst5  6376  edg0iedg0  25800  0eusgraiff0rgracl  26468  heicant  32614  edg0usgr  40479  usgr1v0edg  40483
 Copyright terms: Public domain W3C validator