Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelec Structured version   Visualization version   GIF version

Theorem relelec 7674
 Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
relelec (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem relelec
StepHypRef Expression
1 elex 3185 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ V)
2 ecexr 7634 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
31, 2jca 553 . . 3 (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43adantl 481 . 2 ((Rel 𝑅𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 brrelex12 5079 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
65ancomd 466 . 2 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elecg 7672 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
84, 6, 7pm5.21nd 939 1 (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583  Rel wrel 5043  [cec 7627 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ec 7631 This theorem is referenced by:  eqgid  17469  tgptsmscls  21763  pstmfval  29267  ismntop  29398  topfneec  31520
 Copyright terms: Public domain W3C validator