Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldm | Structured version Visualization version GIF version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm | ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 7109 | . . 3 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) | |
2 | fvex 6113 | . . . . . 6 ⊢ (1st ‘𝑥) ∈ V | |
3 | eqid 2610 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | |
4 | 2, 3 | fnmpti 5935 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 |
5 | fvelrnb 6153 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦) |
7 | fveq2 6103 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (1st ‘𝑥) = (1st ‘𝑧)) | |
8 | fvex 6113 | . . . . . . . 8 ⊢ (1st ‘𝑧) ∈ V | |
9 | 7, 3, 8 | fvmpt 6191 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = (1st ‘𝑧)) |
10 | 9 | eqeq1d 2612 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ (1st ‘𝑧) = 𝑦)) |
11 | 10 | rexbiia 3022 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦) |
12 | 11 | a1i 11 | . . . 4 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) |
13 | 6, 12 | syl5rbb 272 | . . 3 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
14 | 1, 13 | bitrd 267 | . 2 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
15 | 14 | eqrdv 2608 | 1 ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ↦ cmpt 4643 dom cdm 5038 ran crn 5039 Rel wrel 5043 Fn wfn 5799 ‘cfv 5804 1st c1st 7057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-fv 5812 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: fidomdm 8128 dmct 28877 |
Copyright terms: Public domain | W3C validator |