MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regtop Structured version   Visualization version   GIF version

Theorem regtop 20947
Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
regtop (𝐽 ∈ Reg → 𝐽 ∈ Top)

Proof of Theorem regtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 20946 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 475 1 (𝐽 ∈ Reg → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897  wss 3540  cfv 5804  Topctop 20517  clsccl 20632  Regcreg 20923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-reg 20930
This theorem is referenced by:  regsep2  20990  regr1  21363  kqreg  21364  reghmph  21406
  Copyright terms: Public domain W3C validator