Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > regtop | Structured version Visualization version GIF version |
Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
regtop | ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isreg 20946 | . 2 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
2 | 1 | simplbi 475 | 1 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 ‘cfv 5804 Topctop 20517 clsccl 20632 Regcreg 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-reg 20930 |
This theorem is referenced by: regsep2 20990 regr1 21363 kqreg 21364 reghmph 21406 |
Copyright terms: Public domain | W3C validator |