Proof of Theorem regsep2
Step | Hyp | Ref
| Expression |
1 | | regtop 20947 |
. . . . . . 7
⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
2 | 1 | ad2antrr 758 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐽 ∈ Top) |
3 | | elssuni 4403 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽) |
4 | | t1sep.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
5 | 3, 4 | syl6sseqr 3615 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ 𝑋) |
6 | 5 | ad2antrl 760 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ 𝑋) |
7 | 4 | clscld 20661 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
8 | 2, 6, 7 | syl2anc 691 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
9 | 4 | cldopn 20645 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
11 | | simprrr 801 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)) |
12 | 4 | clsss3 20673 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
13 | 2, 6, 12 | syl2anc 691 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
14 | | simplr1 1096 |
. . . . . . 7
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ∈ (Clsd‘𝐽)) |
15 | 4 | cldss 20643 |
. . . . . . 7
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ 𝑋) |
17 | | ssconb 3705 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝑦) ⊆ 𝑋 ∧ 𝐶 ⊆ 𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
18 | 13, 16, 17 | syl2anc 691 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
19 | 11, 18 | mpbid 221 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) |
20 | | simprrl 800 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐴 ∈ 𝑦) |
21 | 4 | sscls 20670 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
22 | 2, 6, 21 | syl2anc 691 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
23 | | sslin 3801 |
. . . . . 6
⊢ (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
25 | | incom 3767 |
. . . . . 6
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = (((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) |
26 | | disjdif 3992 |
. . . . . 6
⊢
(((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) = ∅ |
27 | 25, 26 | eqtri 2632 |
. . . . 5
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅ |
28 | | sseq0 3927 |
. . . . 5
⊢ ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
29 | 24, 27, 28 | sylancl 693 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
30 | | sseq2 3590 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶 ⊆ 𝑥 ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
31 | | ineq1 3769 |
. . . . . . 7
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥 ∩ 𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦)) |
32 | 31 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) |
33 | 30, 32 | 3anbi13d 1393 |
. . . . 5
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))) |
34 | 33 | rspcev 3282 |
. . . 4
⊢ (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
35 | 10, 19, 20, 29, 34 | syl13anc 1320 |
. . 3
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
36 | | simpl 472 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐽 ∈ Reg) |
37 | | simpr1 1060 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ (Clsd‘𝐽)) |
38 | 4 | cldopn 20645 |
. . . . 5
⊢ (𝐶 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
40 | | simpr2 1061 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ 𝑋) |
41 | | simpr3 1062 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐴 ∈ 𝐶) |
42 | 40, 41 | eldifd 3551 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ (𝑋 ∖ 𝐶)) |
43 | | regsep 20948 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝑋 ∖ 𝐶) ∈ 𝐽 ∧ 𝐴 ∈ (𝑋 ∖ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
44 | 36, 39, 42, 43 | syl3anc 1318 |
. . 3
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
45 | 35, 44 | reximddv 3001 |
. 2
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
46 | | rexcom 3080 |
. 2
⊢
(∃𝑦 ∈
𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
47 | 45, 46 | sylib 207 |
1
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |