MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Structured version   Visualization version   GIF version

Theorem recexsr 9807
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sqgt0sr 9806 . 2 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
2 recexsrlem 9803 . . . 4 (0R <R (𝐴 ·R 𝐴) → ∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R)
3 mulclsr 9784 . . . . . . 7 ((𝐴R𝑦R) → (𝐴 ·R 𝑦) ∈ R)
4 mulasssr 9790 . . . . . . . . 9 ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦))
54eqeq1i 2615 . . . . . . . 8 (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)
6 oveq2 6557 . . . . . . . . . 10 (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦)))
76eqeq1d 2612 . . . . . . . . 9 (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R))
87rspcev 3282 . . . . . . . 8 (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
95, 8sylan2b 491 . . . . . . 7 (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
103, 9sylan 487 . . . . . 6 (((𝐴R𝑦R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
1110exp31 628 . . . . 5 (𝐴R → (𝑦R → (((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R)))
1211rexlimdv 3012 . . . 4 (𝐴R → (∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
132, 12syl5 33 . . 3 (𝐴R → (0R <R (𝐴 ·R 𝐴) → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
1413imp 444 . 2 ((𝐴R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
151, 14syldan 486 1 ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  (class class class)co 6549  Rcnr 9566  0Rc0r 9567  1Rc1r 9568   ·R cmr 9571   <R cltr 9572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-plpq 9609  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-plq 9615  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682  df-1p 9683  df-plp 9684  df-mp 9685  df-ltp 9686  df-enr 9756  df-nr 9757  df-plr 9758  df-mr 9759  df-ltr 9760  df-0r 9761  df-1r 9762  df-m1r 9763
This theorem is referenced by:  axrrecex  9863
  Copyright terms: Public domain W3C validator